Difference between revisions of "Template:Added mass damping and force matrices definition"

From WikiWaves
Jump to navigationJump to search
Line 12: Line 12:
 
which is called the damping matrix and the forcing vector is
 
which is called the damping matrix and the forcing vector is
 
<center><math>
 
<center><math>
f_{\mu} = -\mathrm{i}\omega\rho\iint_{\partial\Omega_{B}}
+
f_{\mu} = \mathrm{i}\omega\rho\iint_{\partial\Omega_{B}}
 
\left(\phi^{\mathrm{I}} +  \phi^{\mathrm{D}} \right) \mathbf{n}_{\mu}\, dS
 
\left(\phi^{\mathrm{I}} +  \phi^{\mathrm{D}} \right) \mathbf{n}_{\mu}\, dS
 
</math></center>
 
</math></center>

Revision as of 12:21, 26 April 2011

We then define the matrices

[math]\displaystyle{ A_{\mu\nu} = \mathrm{Re} \left\{ -\frac{\mathrm{i}}{\omega}\rho\iint_{\partial\Omega_{B}} \phi_{\nu}^{\mathrm{R}} \mathbf{n}_{\mu}\, dS \right\} }[/math]

which is called the added mass matrix and We then define the matrices

[math]\displaystyle{ B_{\mu\nu} = \mathrm{Im} \left\{ \rho\iint_{\partial\Omega_{B}} \phi_{\nu}^{\mathrm{R}} \mathbf{n}_{\mu}\, dS \right\} }[/math]

which is called the damping matrix and the forcing vector is

[math]\displaystyle{ f_{\mu} = \mathrm{i}\omega\rho\iint_{\partial\Omega_{B}} \left(\phi^{\mathrm{I}} + \phi^{\mathrm{D}} \right) \mathbf{n}_{\mu}\, dS }[/math]