Difference between revisions of "Introduction to the Inverse Scattering Transform"
(Created page with '{{nonlinear waves course | chapter title = Introduction to the Inverse Scattering Transform | next chapter = Reaction-Diffusion Systems | previous chapter = [[Conservation…') |
|||
Line 4: | Line 4: | ||
| previous chapter = [[Conservation Laws for the KdV]] | | previous chapter = [[Conservation Laws for the KdV]] | ||
}} | }} | ||
+ | |||
+ | The inverse scattering transformation gives a way to solve the KdV equation | ||
+ | exactly. You can think about is as being an analogous transformation to the | ||
+ | Fourier transformation, except it works for a non linear equation. We want to | ||
+ | be able to solve | ||
+ | <center><math>\begin{matrix} | ||
+ | \partial_{t}u+6u\partial_{x}u+\partial_{x}^{3}u & =0\\ | ||
+ | u(x,0) & =f\left( x\right) | ||
+ | \end{matrix}</math></center> | ||
+ | with <math>\left\vert u\right\vert \rightarrow0</math> as <math>x\rightarrow\pm\infty.</math> | ||
+ | |||
+ | The Miura transformation is given by | ||
+ | <center><math> | ||
+ | u=v^{2}+v_{x} | ||
+ | </math></center> | ||
+ | and if <math>v</math> satisfies the mKdV | ||
+ | <center><math> | ||
+ | \partial_{t}v-6v^{2}\partial_{x}v+\partial_{x}^{3}v=0 | ||
+ | </math></center> | ||
+ | then <math>u</math> satisfies the KdV (but not vice versa). We can think about the Miura | ||
+ | transformation as being a nonlinear ODE solving for <math>v</math> given <math>u.</math> This | ||
+ | nonlinear ODE is also known as the Riccati equation and there is a well know | ||
+ | transformation which linearises this equation. It we write | ||
+ | <center><math> | ||
+ | v=\frac{\left( \partial_{x}w\right) }{w} | ||
+ | </math></center> | ||
+ | then we obtain the equation | ||
+ | <center><math> | ||
+ | \partial_{x}^{2}w+uw=0 | ||
+ | </math></center> | ||
+ | The KdV is invariant under the transformation <math>x\rightarrow x+6\lambda t,</math> | ||
+ | <math>u\rightarrow u+\lambda.</math> Therefore we consider the associated eigenvalue | ||
+ | problem | ||
+ | <center><math> | ||
+ | \partial_{x}^{2}w+uw=-\lambda w | ||
+ | </math></center> | ||
+ | The eigenfunctions and eigenvalues of this scattering problem play a key role | ||
+ | in the inverse scattering transformation. Note that this is Schrodinger's equation. | ||
+ | |||
+ | ==Properties of the eigenfunctions== | ||
+ | |||
+ | The equation | ||
+ | <center><math> | ||
+ | \partial_{x}^{2}w+uw=-\lambda w | ||
+ | </math></center> | ||
+ | has two kinds of solutions for <math>u\rightarrow0</math> as <math>x\rightarrow\pm\infty.</math> The | ||
+ | first are waves and the second are bound solutions. It is well known that | ||
+ | there are at most a finite number of bound solutions (provided <math>u\rightarrow0</math> | ||
+ | as <math>x\pm\infty</math> sufficiently rapidly) and a continum of solutions for the | ||
+ | incident waves. | ||
+ | |||
+ | ===Example: Scattering by a Well=== | ||
+ | |||
+ | The properties of the eigenfunction is prehaps seem most easily through the | ||
+ | following example | ||
+ | <center><math> | ||
+ | u\left( x\right) =\left\{ | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | 0 & x\notin\left[ -1,1\right] \\ | ||
+ | b & x\in\left[ -1,1\right] | ||
+ | \end{matrix} | ||
+ | \right. | ||
+ | </math></center> | ||
+ | where <math>b>0.</math> | ||
+ | |||
+ | \paragraph{Case when <math>\lambda>0</math>} | ||
+ | |||
+ | If we solve this equation for the case when <math>\lambda<0,</math> <math>\lambda=-k^{2}</math> we | ||
+ | get | ||
+ | <center><math> | ||
+ | w\left( x\right) =\left\{ | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | a_{1}e^{kx}, & x<-1\\ | ||
+ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -1<x<1\\ | ||
+ | a_{2}e^{-kx} & x>1 | ||
+ | \end{matrix} | ||
+ | \right. | ||
+ | </math></center> | ||
+ | where <math>\kappa=\sqrt{b-k^{2}}</math> where we have assumed that <math>b>k^{2}</math> (there is | ||
+ | no solution for <math>b<k^{2}).</math> We then match <math>w</math> and its derivative at <math>x=\pm1</math> | ||
+ | to solve for <math>a</math> and <math>b</math>. This leads to two system of equation, one for the | ||
+ | even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd solutions | ||
+ | (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions is | ||
+ | <center><math> | ||
+ | \left( | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | e^{-kx} & -\cos\kappa\\ | ||
+ | ke^{-kx} & \sin\kappa | ||
+ | \end{matrix} | ||
+ | \right) \left( | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | a_{1}\\ | ||
+ | b_{1} | ||
+ | \end{matrix} | ||
+ | \right) =\left( | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | 0\\ | ||
+ | 0 | ||
+ | \end{matrix} | ||
+ | \right) | ||
+ | </math></center> | ||
+ | This can non trivial solutions when | ||
+ | <center><math> | ||
+ | \det\left( | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | e^{-kx} & -\cos\kappa\\ | ||
+ | ke^{-kx} & \sin\kappa | ||
+ | \end{matrix} | ||
+ | \right) =0 | ||
+ | </math></center> | ||
+ | which gives us the equation | ||
+ | <center><math> | ||
+ | e^{-kx}\sin\kappa+\left( \cos\kappa\right) ke^{-kx}=0 | ||
+ | </math></center> | ||
+ | or | ||
+ | <center><math> | ||
+ | \tan\kappa=-k=-\sqrt{b-\kappa^{2}} | ||
+ | </math></center> | ||
+ | We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a | ||
+ | finite number of solutions. | ||
+ | |||
+ | \paragraph{Case when <math>\lambda>0</math>} | ||
+ | |||
+ | When <math>\lambda>0</math> we write <math>\lambda=k^{2}</math> and we obtain solution | ||
+ | <center><math> | ||
+ | w\left( x\right) =\left\{ | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | e^{-ikx}+re^{ikx}, & x<-1\\ | ||
+ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -1<x<1\\ | ||
+ | ae^{-ikx} & x>1 | ||
+ | \end{matrix} | ||
+ | \right. | ||
+ | </math></center> | ||
+ | where <math>\kappa=\sqrt{b+k^{2}}.</math> Matching <math>w</math> and its derivaties at <math>x=\pm1</math> we | ||
+ | obtain | ||
+ | <center><math> | ||
+ | \left( | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | -e^{-ik} & \cos\kappa & -\sin\kappa & 0\\ | ||
+ | ike^{-ik} & \kappa\sin\kappa & \kappa\cos\kappa & 0\\ | ||
+ | 0 & \cos\kappa & \sin\kappa & -e^{-ik}\\ | ||
+ | 0 & -\kappa\sin\kappa & \kappa\cos\kappa & ike^{-ik} | ||
+ | \end{matrix} | ||
+ | \right) \left( | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | r\\ | ||
+ | b_{1}\\ | ||
+ | b_{2}\\ | ||
+ | a | ||
+ | \end{matrix} | ||
+ | \right) =\left( | ||
+ | \begin{matrix} | ||
+ | [c] | ||
+ | e^{ik}\\ | ||
+ | ike^{-ik}\\ | ||
+ | 0\\ | ||
+ | 0 | ||
+ | \end{matrix} | ||
+ | \right) | ||
+ | </math></center> | ||
+ | |||
+ | |||
+ | ==Connection with the KdV== | ||
+ | |||
+ | If we substitute the relationship | ||
+ | <center><math> | ||
+ | \partial_{x}^{2}w+uw=-\lambda w | ||
+ | </math></center> | ||
+ | into the KdV after some manipulation we obtain | ||
+ | <center><math> | ||
+ | \partial_{t}\lambda w^{2}+\partial_{x}\left( w\partial_{x}Q-\partial | ||
+ | _{x}wQ\right) =0 | ||
+ | </math></center> | ||
+ | where <math>Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) | ||
+ | \partial_{x}w.</math> If we integrate this equation then we obtain the result that | ||
+ | <center><math> | ||
+ | \partial_{t}\lambda=0 | ||
+ | </math></center> | ||
+ | provided that the eigenfunction <math>w</math> is bounded (which is true for the bound | ||
+ | state eigenfunctions). This shows that the discrete eigenvalues are unchanged | ||
+ | and <math>u\left( x,t\right) </math> evolves according to the KdV. | ||
+ | |||
+ | ==Scattering Data== | ||
+ | |||
+ | For the discrete spectrum the eigenfunctions behave like | ||
+ | <center><math> | ||
+ | w_{n}\left( x\right) =c_{n}\left( t\right) e^{-k_{n}x} | ||
+ | </math></center> | ||
+ | as <math>x\rightarrow\infty</math> with | ||
+ | <center><math> | ||
+ | \int_{-\infty}^{\infty}\left( w_{n}\left( x\right) \right) ^{2}dx=1 | ||
+ | </math></center> | ||
+ | The continuous spectrum looks like | ||
+ | <center><math> | ||
+ | v\left( x,t\right) \approx e^{-ikx}+r\left( k,t\right) e^{ikx} | ||
+ | ,\ \ \ x\rightarrow-\infty | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | v\left( x,t\right) \approx a\left( k,t\right) e^{-ikx},\ \ \ x\rightarrow | ||
+ | \infty | ||
+ | </math></center> | ||
+ | where <math>r</math> is the reflection coefficient and <math>a</math> is the transmission | ||
+ | coefficient. This gives us the scattering data at <math>t=0</math> | ||
+ | <center><math> | ||
+ | S\left( \lambda,0\right) =\left( \left\{ k_{n},c_{n}\left( 0\right) | ||
+ | \right\} _{n=1}^{N},r\left( k,0\right) ,a\left( k,0\right) \right) | ||
+ | </math></center> | ||
+ | The scattering data evolves as | ||
+ | <center><math> | ||
+ | k_{n}=k_{n} | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | c_{n}\left( t\right) =c_{n}\left( 0\right) e^{4k_{n}^{3}t} | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | r\left( k,t\right) =r\left( k,0\right) e^{8ik^{3}t} | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | a\left( k,t\right) =a\left( k,0\right) | ||
+ | </math></center> | ||
+ | We can recover <math>u</math> from scattering data. We write | ||
+ | <center><math> | ||
+ | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n} | ||
+ | x}+\int_{-\infty}^{\infty}r\left( k,t\right) e^{ikx}dk | ||
+ | </math></center> | ||
+ | Then solve | ||
+ | <center><math> | ||
+ | K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( | ||
+ | x,z;t\right) F\left( z+y;t\right) dz=0 | ||
+ | </math></center> | ||
+ | This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko | ||
+ | }equation. We then find <math>u</math> from | ||
+ | <center><math> | ||
+ | u\left( x,t\right) =2\partial_{x}K\left( x,x,t\right) | ||
+ | </math></center> | ||
+ | |||
+ | |||
+ | ==Reflectionless Potential== | ||
+ | |||
+ | In general the IST is difficult to solve. However, there is a simplification | ||
+ | we can make when we have a reflectionless potential (which we will see gives | ||
+ | rise to the soliton solutions). The reflectionless potential is the case when | ||
+ | <math>r\left( k,0\right) =0</math> for all values of <math>k</math> for some <math>u.</math> In this case | ||
+ | <center><math> | ||
+ | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}x} | ||
+ | </math></center> | ||
+ | then | ||
+ | <center><math> | ||
+ | K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) | ||
+ | e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) | ||
+ | \sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }dz=0 | ||
+ | </math></center> | ||
+ | From the equation we can see that | ||
+ | <center><math> | ||
+ | K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) v_{m}\left( | ||
+ | x\right) e^{-k_{m}y} | ||
+ | </math></center> | ||
+ | If we substitute this into the equation | ||
+ | <center><math> | ||
+ | -\sum_{n=1}^{N}c_{n}\left( t\right) v_{n}\left( x\right) e^{-k_{n}y} | ||
+ | +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( x+y\right) } | ||
+ | +\int_{x}^{\infty}-\sum_{m=1}^{N}c_{m}\left( t\right) v_{m}\left( x\right) | ||
+ | e^{-k_{m}y}\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( | ||
+ | y+z\right) }dz=0 | ||
+ | </math></center> | ||
+ | which leads to | ||
+ | <center><math> | ||
+ | -\sum_{n=1}^{N}c_{n}\left( t\right) v_{n}\left( x\right) e^{-k_{n}y} | ||
+ | +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( x+y\right) } | ||
+ | -\sum_{n=1}^{N}\sum_{m=1}^{N}\frac{c_{m}\left( t\right) c_{n}^{2}\left( | ||
+ | t\right) }{k_{n}+k_{m}}v_{m}\left( x\right) e^{-k_{m}x}e^{-k_{n}\left( | ||
+ | y+x\right) }=0 | ||
+ | </math></center> | ||
+ | and we can eliminate the sum over <math>n</math> , the <math>c_{n}\left( t\right) ,</math> and the | ||
+ | <math>e^{-k_{n}y}</math> to obtain | ||
+ | <center><math> | ||
+ | -v_{n}\left( x\right) +c_{n}\left( t\right) e^{-k_{n}x}-\sum_{m=1} | ||
+ | ^{N}\frac{c_{n}\left( t\right) c_{m}\left( t\right) }{k_{n}+k_{m}} | ||
+ | v_{m}\left( x\right) e^{-\left( k_{m}+k_{n}\right) x}=0 | ||
+ | </math></center> | ||
+ | which is an algebraic (finite dimensional system)\ for the unknows <math>v_{n}.</math> We | ||
+ | can write this as | ||
+ | <center><math> | ||
+ | \left( \mathbf{I}+\mathbf{C}\right) \vec{v}=\vec{f} | ||
+ | </math></center> | ||
+ | where <math>f_{m}=c_{m}\left( t\right) e^{-k_{m}x}</math> and | ||
+ | <center><math> | ||
+ | c_{mn}=\sum_{m=1}^{N}\frac{c_{n}\left( t\right) c_{m}\left( t\right) | ||
+ | }{k_{n}+k_{m}}e^{-\left( k_{m}+k_{n}\right) x} | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) \left( | ||
+ | \mathbf{I}+\mathbf{C}\right) ^{-1}\vec{f}e^{-k_{m}y} | ||
+ | </math></center> | ||
+ | This leads to | ||
+ | <center><math> | ||
+ | u\left( x,t\right) =2\partial_{x}^{2}\log\left[ \det\left( \mathbf{I} | ||
+ | +\mathbf{C}\right) \right] | ||
+ | </math></center> | ||
+ | Lets consider some simple examples. First of all if <math>n=1</math> (the single soliton | ||
+ | solution) we get | ||
+ | <center><math>\begin{matrix} | ||
+ | K\left( x,x,t\right) & =-\frac{c_{1}\left( t\right) c_{1}\left( | ||
+ | t\right) e^{-k_{1}x}e^{-k_{1}x}}{1+\frac{c_{1}\left( t\right) c_{1}\left( | ||
+ | t\right) }{k_{1}+k_{1}}e^{-\left( k_{1}+k_{1}\right) x}}\\ | ||
+ | & =\frac{-1}{1+e^{2k_{1}x-8k_{1}^{3}t-\alpha}} | ||
+ | \end{matrix}</math></center> | ||
+ | where <math>e^{-\alpha}=2c_{0}^{2}\left( 0\right) .</math> Therefore | ||
+ | <center><math>\begin{matrix} | ||
+ | u\left( x,t\right) & =2\partial_{x}K\left( x,x,t\right) \\ | ||
+ | & =\frac{4k_{1}e^{2k_{1}x-8k_{1}^{3}t-\alpha}}{\left( 1+e^{2k_{1} | ||
+ | x-8k_{1}^{3}t-\alpha}\right) ^{2}}\\ | ||
+ | & =\frac{-8k_{1}^{2}}{\left( \sqrt{2k_{1}}e^{\theta}+e^{-\theta} | ||
+ | /\sqrt{2k_{1}}\right) ^{2}}\\ | ||
+ | & =2k^{2}\sec^{2}\left\{ k_{1}\left( x-x_{0}\right) -4k_{1}^{3}t\right\} | ||
+ | \end{matrix}</math></center> | ||
+ | where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} | ||
+ | }</math>. This is of course the single soliton solution. |
Revision as of 22:24, 15 September 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Introduction to the Inverse Scattering Transform |
Next Topic | Reaction-Diffusion Systems |
Previous Topic | Conservation Laws for the KdV |
The inverse scattering transformation gives a way to solve the KdV equation exactly. You can think about is as being an analogous transformation to the Fourier transformation, except it works for a non linear equation. We want to be able to solve
with [math]\displaystyle{ \left\vert u\right\vert \rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math]
The Miura transformation is given by
and if [math]\displaystyle{ v }[/math] satisfies the mKdV
then [math]\displaystyle{ u }[/math] satisfies the KdV (but not vice versa). We can think about the Miura transformation as being a nonlinear ODE solving for [math]\displaystyle{ v }[/math] given [math]\displaystyle{ u. }[/math] This nonlinear ODE is also known as the Riccati equation and there is a well know transformation which linearises this equation. It we write
then we obtain the equation
The KdV is invariant under the transformation [math]\displaystyle{ x\rightarrow x+6\lambda t, }[/math] [math]\displaystyle{ u\rightarrow u+\lambda. }[/math] Therefore we consider the associated eigenvalue problem
The eigenfunctions and eigenvalues of this scattering problem play a key role in the inverse scattering transformation. Note that this is Schrodinger's equation.
Properties of the eigenfunctions
The equation
has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves.
Example: Scattering by a Well
The properties of the eigenfunction is prehaps seem most easily through the following example
where [math]\displaystyle{ b\gt 0. }[/math]
\paragraph{Case when [math]\displaystyle{ \lambda\gt 0 }[/math]}
If we solve this equation for the case when [math]\displaystyle{ \lambda\lt 0, }[/math] [math]\displaystyle{ \lambda=-k^{2} }[/math] we get
where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math] where we have assumed that [math]\displaystyle{ b\gt k^{2} }[/math] (there is no solution for [math]\displaystyle{ b\lt k^{2}). }[/math] We then match [math]\displaystyle{ w }[/math] and its derivative at [math]\displaystyle{ x=\pm1 }[/math] to solve for [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This leads to two system of equation, one for the even ([math]\displaystyle{ a_{1}=a_{2} }[/math] and [math]\displaystyle{ b_{2}=0 }[/math] ) and one for the odd solutions ([math]\displaystyle{ a_{1}=-a_{2} }[/math] and [math]\displaystyle{ b_{1}=0) }[/math]. The solution for the even solutions is
This can non trivial solutions when
which gives us the equation
or
We know that [math]\displaystyle{ 0\lt \kappa\lt \sqrt{b} }[/math] and if we plot this we see that we obtain a finite number of solutions.
\paragraph{Case when [math]\displaystyle{ \lambda\gt 0 }[/math]}
When [math]\displaystyle{ \lambda\gt 0 }[/math] we write [math]\displaystyle{ \lambda=k^{2} }[/math] and we obtain solution
where [math]\displaystyle{ \kappa=\sqrt{b+k^{2}}. }[/math] Matching [math]\displaystyle{ w }[/math] and its derivaties at [math]\displaystyle{ x=\pm1 }[/math] we obtain
Connection with the KdV
If we substitute the relationship
into the KdV after some manipulation we obtain
where [math]\displaystyle{ Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) \partial_{x}w. }[/math] If we integrate this equation then we obtain the result that
provided that the eigenfunction [math]\displaystyle{ w }[/math] is bounded (which is true for the bound state eigenfunctions). This shows that the discrete eigenvalues are unchanged and [math]\displaystyle{ u\left( x,t\right) }[/math] evolves according to the KdV.
Scattering Data
For the discrete spectrum the eigenfunctions behave like
as [math]\displaystyle{ x\rightarrow\infty }[/math] with
The continuous spectrum looks like
where [math]\displaystyle{ r }[/math] is the reflection coefficient and [math]\displaystyle{ a }[/math] is the transmission coefficient. This gives us the scattering data at [math]\displaystyle{ t=0 }[/math]
The scattering data evolves as
We can recover [math]\displaystyle{ u }[/math] from scattering data. We write
Then solve
This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko }equation. We then find [math]\displaystyle{ u }[/math] from
Reflectionless Potential
In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when [math]\displaystyle{ r\left( k,0\right) =0 }[/math] for all values of [math]\displaystyle{ k }[/math] for some [math]\displaystyle{ u. }[/math] In this case
then
From the equation we can see that
If we substitute this into the equation
which leads to
and we can eliminate the sum over [math]\displaystyle{ n }[/math] , the [math]\displaystyle{ c_{n}\left( t\right) , }[/math] and the [math]\displaystyle{ e^{-k_{n}y} }[/math] to obtain
which is an algebraic (finite dimensional system)\ for the unknows [math]\displaystyle{ v_{n}. }[/math] We can write this as
where [math]\displaystyle{ f_{m}=c_{m}\left( t\right) e^{-k_{m}x} }[/math] and
This leads to
Lets consider some simple examples. First of all if [math]\displaystyle{ n=1 }[/math] (the single soliton solution) we get
where [math]\displaystyle{ e^{-\alpha}=2c_{0}^{2}\left( 0\right) . }[/math] Therefore
where [math]\displaystyle{ \theta=k_{1}x-4k^{3}t-\alpha/2 }[/math] and [math]\displaystyle{ \sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} } }[/math]. This is of course the single soliton solution.