Difference between revisions of "Example Calculations for the KdV and IST"
Line 39: | Line 39: | ||
u\left( x\right) =\left\{ | u\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | |||
0, & x\notin\left[ -1,1\right] \\ | 0, & x\notin\left[ -1,1\right] \\ | ||
20, & x\in\left[ -1,1\right] | 20, & x\in\left[ -1,1\right] | ||
Line 45: | Line 44: | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
− | For | + | For the even solutions we need to solve |
<center><math> | <center><math> | ||
\tan\kappa=\frac{k}{\kappa} | \tan\kappa=\frac{k}{\kappa} | ||
</math></center> | </math></center> | ||
− | + | where <math>\kappa=\sqrt{b-k^{2}}</math>. | |
+ | |||
+ | For the odd solutions we need to solve and | ||
<center><math> | <center><math> | ||
\tan\kappa=-\frac{\kappa}{k} | \tan\kappa=-\frac{\kappa}{k} | ||
</math></center> | </math></center> | ||
− | |||
Recall that the solitons have amplitude <math>2k_{n}^{2}</math> or <math>-2\lambda_{n}</math>. This | Recall that the solitons have amplitude <math>2k_{n}^{2}</math> or <math>-2\lambda_{n}</math>. This |
Revision as of 00:18, 24 September 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Example Calculations for the KdV and IST |
Next Topic | Connection betwen KdV and the Schrodinger Equation |
Previous Topic | Reaction-Diffusion Systems |
Example1 Delta function potential.
We have already calculated the scattering data for the delta function potential. The scattering data is
The spectral data evolves as
so that
Example 2 A Hat Function
We solve for the case when
For the even solutions we need to solve
where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math].
For the odd solutions we need to solve and
Recall that the solitons have amplitude [math]\displaystyle{ 2k_{n}^{2} }[/math] or [math]\displaystyle{ -2\lambda_{n} }[/math]. This can be seen in the height of the solitary waves.
We cannot work with a hat function numerically, because the jump in [math]\displaystyle{ u }[/math] leads to high frequencies which dominate the response.. We can smooth our function by a number of methods. We use here the function [math]\displaystyle{ \tanh\left( x\right) }[/math] so we write
where [math]\displaystyle{ \nu }[/math] is an appropriate constant to make the function increase in value sufficiently rapidly but not too rapidly.
Animation | Three-dimensional plot. |
---|---|