Difference between revisions of "Connection betwen KdV and the Schrodinger Equation"
Line 32: | Line 32: | ||
as <math>x\rightarrow\infty</math> with | as <math>x\rightarrow\infty</math> with | ||
<center><math> | <center><math> | ||
− | \int_{-\infty}^{\infty}\left( w_{n}\left( x\right) \right) ^{2} | + | \int_{-\infty}^{\infty}\left( w_{n}\left( x\right) \right) ^{2}\mathrm{d}x=1 |
</math></center> | </math></center> | ||
The continuous spectrum looks like | The continuous spectrum looks like | ||
Line 65: | Line 65: | ||
<center><math> | <center><math> | ||
F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n} | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n} | ||
− | x}+\frac{1}{2\pi}\int_{-\infty}^{\infty}r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx} | + | x}+\frac{1}{2\pi}\int_{-\infty}^{\infty}r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx}\mathrm{d}k |
</math></center> | </math></center> | ||
Then solve | Then solve | ||
<center><math> | <center><math> | ||
K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( | K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( | ||
− | x,z;t\right) F\left( z+y;t\right) | + | x,z;t\right) F\left( z+y;t\right) \mathrm{d}z=0 |
</math></center> | </math></center> | ||
This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko | This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko |
Revision as of 09:47, 6 November 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Connection betwen KdV and the Schrodinger Equation |
Next Topic | Example Calculations for the KdV and IST |
Previous Topic | Properties of the Linear Schrodinger Equation |
If we substitute the relationship
into the KdV after some manipulation we obtain
where [math]\displaystyle{ Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) \partial_{x}w. }[/math] If we integrate this equation then we obtain the result that
provided that the eigenfunction [math]\displaystyle{ w }[/math] is bounded (which is true for the bound state eigenfunctions). This shows that the discrete eigenvalues are unchanged and [math]\displaystyle{ u\left( x,t\right) }[/math] evolves according to the KdV. Many other properties can be found
Scattering Data
For the discrete spectrum the eigenfunctions behave like
as [math]\displaystyle{ x\rightarrow\infty }[/math] with
The continuous spectrum looks like
where [math]\displaystyle{ r }[/math] is the reflection coefficient and [math]\displaystyle{ a }[/math] is the transmission coefficient. This gives us the scattering data at [math]\displaystyle{ t=0 }[/math]
The scattering data evolves as
We can recover [math]\displaystyle{ u }[/math] from scattering data. We write
Then solve
This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko }equation. We then find [math]\displaystyle{ u }[/math] from
Reflectionless Potential
In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when [math]\displaystyle{ r\left( k,0\right) =0 }[/math] for all values of [math]\displaystyle{ k }[/math] for some [math]\displaystyle{ u. }[/math] In this case
then
From the equation we can see that
If we substitute this into the equation,
which leads to
and we can eliminate the sum over [math]\displaystyle{ n }[/math] and the [math]\displaystyle{ e^{-k_{n}y} }[/math] to obtain
which is an algebraic (finite dimensional system) for the unknows [math]\displaystyle{ v_{n}. }[/math].
We can write this as
where [math]\displaystyle{ f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x} }[/math] and the elements of [math]\displaystyle{ mathbf{C} }[/math] are given by
This gives us
We then find [math]\displaystyle{ u(x,t) }[/math] from [math]\displaystyle{ K }[/math].
Single Soliton Example
If [math]\displaystyle{ n=1 }[/math] (a single soliton solution) we get
where [math]\displaystyle{ e^{-\alpha}=1/c_{0}^{2}\left( 0\right) . }[/math] Therefore
where [math]\displaystyle{ \theta=k_{1}x-4k^{3}t-\alpha/2 }[/math] and [math]\displaystyle{ \sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} } }[/math]. This is of course the single soliton solution.