Difference between revisions of "Kagemoto and Yue Interaction Theory"

From WikiWaves
Jump to navigationJump to search
Line 4: Line 4:
 
The basic idea is as follows: The scattered potential of each body is represented in the [[Cylindrical Eigenfunction Expansion]] associated with the local coordinates centred at the mean centre position of the body. Using [[Graf's Addition Theorem]], the scattered potential of all bodies (given in their local coordinates) can be mapped to an incident potential associated with the coordiates of all other bodies. Doing this, the incident potential of each body (which is given by the ambient incident potential plus the scattered potentials of all other bodies) is given in the [[Cylindrical Eigenfunction Expansion]] associated with its local coordinates. Using the [[Diffraction Transfer Matrix]], which relates the incident and scattered potential of each body in isolation, a system of equations for the coefficients of the scattered potentials of all bodies is obtained.   
 
The basic idea is as follows: The scattered potential of each body is represented in the [[Cylindrical Eigenfunction Expansion]] associated with the local coordinates centred at the mean centre position of the body. Using [[Graf's Addition Theorem]], the scattered potential of all bodies (given in their local coordinates) can be mapped to an incident potential associated with the coordiates of all other bodies. Doing this, the incident potential of each body (which is given by the ambient incident potential plus the scattered potentials of all other bodies) is given in the [[Cylindrical Eigenfunction Expansion]] associated with its local coordinates. Using the [[Diffraction Transfer Matrix]], which relates the incident and scattered potential of each body in isolation, a system of equations for the coefficients of the scattered potentials of all bodies is obtained.   
  
The theory is described in [[Kagemoto_Yue_1986a|Kagemoto and Yue 1986]] and in
+
The theory is described in [[Kagemoto and Yue 1986]] and in
[[Peter_Meylan_2004a|Peter and Meylan 2004]].
+
[[Peter and Meylan 2004]].
 +
 
 +
[[Category:Linear Water-Wave Theory]]

Revision as of 01:37, 2 June 2006

This is an interaction theory which provides the exact solution (i.e. it is not based on a Wide Spacing Approximation). The theory uses the Cylindrical Eigenfunction Expansion and Graf's Addition Theorem to represent the potential in local coordinates. The incident and scattered potential of each body are then related by the associated Diffraction Transfer Matrix.

The basic idea is as follows: The scattered potential of each body is represented in the Cylindrical Eigenfunction Expansion associated with the local coordinates centred at the mean centre position of the body. Using Graf's Addition Theorem, the scattered potential of all bodies (given in their local coordinates) can be mapped to an incident potential associated with the coordiates of all other bodies. Doing this, the incident potential of each body (which is given by the ambient incident potential plus the scattered potentials of all other bodies) is given in the Cylindrical Eigenfunction Expansion associated with its local coordinates. Using the Diffraction Transfer Matrix, which relates the incident and scattered potential of each body in isolation, a system of equations for the coefficients of the scattered potentials of all bodies is obtained.

The theory is described in Kagemoto and Yue 1986 and in Peter and Meylan 2004.