Difference between revisions of "Free-Surface Green Function"

From WikiWaves
Jump to navigationJump to search
Line 31: Line 31:
  
 
= Three Dimensional Representations =
 
= Three Dimensional Representations =
 +
 +
Let <math>(r,\theta)</math> be spherical coordinates such that
 +
 +
<math>
 +
x - a = r \cos \theta,\,
 +
</math>
 +
 +
<math>
 +
y - b  = r \sin \theta,\,
 +
</math>
 +
 +
and let <math>R_0</math> and <math>R_1</math> denote the
 +
distance from the source point <math>\mathbf{\xi} = (a,b,c)</math>
 +
and the distance from the ''mirror'' source point
 +
<math>\bar{\mathbf{\xi}} = (a,b,-c)</math> respectively,
 +
<math>R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2</math> and <math>R_1^2 = (x-a)^2 + (y-b)^2 +
 +
(z+c)^2</math>.
  
 
==[[Finite Depth]]==
 
==[[Finite Depth]]==
Line 50: Line 67:
  
 
In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was
 
In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was
given by {\em Havelock\/} \cite{havelock55} as
+
given by ''Havelock'' ([[Havelock_1955a|Havelock 1955]]) as
 
 
Let <math>(r,\theta)</math> be spherical coordinates such that
 
 
 
<math>
 
x - a = r \cos \theta,\,
 
</math>
 
 
 
<math>
 
y - b  = r \sin \theta,\,
 
</math>
 
 
 
and let <math>R_0</math> and <math>R_1</math> denote the
 
distance from the source point <math>\mathbf{\xi} = (a,b,c)</math>
 
and the distance from the ''mirror'' source point
 
<math>\bar{\mathbf{\xi}} = (a,b,-c)</math> respectively,
 
<math>R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2</math> and <math>R_1^2 = (x-a)^2 + (y-b)^2 +
 
(z+c)^2</math>.
 
  
 
<math>
 
<math>
Line 79: Line 79:
 
where <math>H^{(1)}_0</math> and <math>K_0</math> denote the Hankel function of the first
 
where <math>H^{(1)}_0</math> and <math>K_0</math> denote the Hankel function of the first
 
kind and the modified Bessel function of the second kind, both of
 
kind and the modified Bessel function of the second kind, both of
order zero as defined in {\em Abramowitz \& Stegun}
+
order zero as defined in [[Abramowitz_Stegun_1970|Abramowitz and Stegun 1970]].
\cite{abr_ste}. This Green function will be referred to as {\em
+
This Green function will be referred to as  
Havelock\/}'s Green function. It should be noted that {\em Havelock\/}'s Green
+
''Havelock's'' Green function. It should be noted that ''Havelock's'' Green
 
function can also be written in the following closely related form,  
 
function can also be written in the following closely related form,  
  
Line 92: Line 92:
 
</math>
 
</math>
  
\cite{linton01}. An equivalent representation is due to {\em Kim}
+
[[Linton_McIver_2001a|Linton and McIver 2001]]. An equivalent representation is due to  
\cite{kim65} for <math>r>0</math>, although implicitly given in the work of {\em
+
[[Kim_1965a|Kim 1965]] for <math>r>0</math>, although implicitly given in the work of  
Havelock} \cite{havelock55}, and is given by
+
''Havelock'', and is given by
  
 
<math>
 
<math>

Revision as of 03:16, 26 May 2006

Introduction

Equations for the Green function

The Free-Surface Green function is a function which satisfies the following equation (in Finite Depth) [math]\displaystyle{ \mathbf{x}=(x,y,z) }[/math] and [math]\displaystyle{ \mathbf{\xi}=(a,b,c) }[/math]

[math]\displaystyle{ \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=h, }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}\phi,\,z\in\Gamma_s, }[/math]

[math]\displaystyle{ \frac{\partial G}{\partial z} = L\phi, \, z\in\Gamma_w. }[/math]

where [math]\displaystyle{ k_{\infty} }[/math] is the wavenumber in Infinite Depth which is given by [math]\displaystyle{ k_{\infty}=\omega^2/g }[/math] where [math]\displaystyle{ g }[/math] is gravity.

Two Dimensional Representations

Many expressions for the Green function have been given. In two dimensions it can be written as

Three Dimensional Representations

Let [math]\displaystyle{ (r,\theta) }[/math] be spherical coordinates such that

[math]\displaystyle{ x - a = r \cos \theta,\, }[/math]

[math]\displaystyle{ y - b = r \sin \theta,\, }[/math]

and let [math]\displaystyle{ R_0 }[/math] and [math]\displaystyle{ R_1 }[/math] denote the distance from the source point [math]\displaystyle{ \mathbf{\xi} = (a,b,c) }[/math] and the distance from the mirror source point [math]\displaystyle{ \bar{\mathbf{\xi}} = (a,b,-c) }[/math] respectively, [math]\displaystyle{ R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2 }[/math] and [math]\displaystyle{ R_1^2 = (x-a)^2 + (y-b)^2 + (z+c)^2 }[/math].

Finite Depth

The most important representation of the finite depth free surface Green function is the eigenfunction expansion given by John 1950

[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i}{2} \, \frac{\alpha^2-k^2}{(\alpha^2-k^2)d-\alpha}\, \cosh k(z+d)\, \cosh k(c+d) \, H_0^{(1)}(k r) + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{k_m^2+\alpha^2}{(k_m^2+\alpha^2)d-\alpha}\, \cos k_m(z+d)\, \cos k_m(c+d) \, K_0(k_m r), }[/math]

Infinite Depth

In three dimensions and infinite depth the Green function [math]\displaystyle{ G }[/math], for [math]\displaystyle{ r\gt 0 }[/math], was given by Havelock (Havelock 1955) as

[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{1}{\pi^2} \int\limits_{0}^{\infty} \frac{\alpha}{\eta^2 + \alpha^2} \big( \alpha \cos \eta (z+c) - \eta \sin \eta (z+c) \big) K_0(\eta r) d\eta, }[/math]

where [math]\displaystyle{ H^{(1)}_0 }[/math] and [math]\displaystyle{ K_0 }[/math] denote the Hankel function of the first kind and the modified Bessel function of the second kind, both of order zero as defined in Abramowitz and Stegun 1970. This Green function will be referred to as Havelock's Green function. It should be noted that Havelock's Green function can also be written in the following closely related form,

[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{2 \pi^2} \int\limits_{0}^{\infty} \frac{(\eta^2 - \alpha^2) \cos \eta (z+c) + 2 \eta \alpha \sin \eta (z+c)}{\eta^2 + \alpha^2} K_0(\eta r) d\eta }[/math]

Linton and McIver 2001. An equivalent representation is due to Kim 1965 for [math]\displaystyle{ r\gt 0 }[/math], although implicitly given in the work of Havelock, and is given by

[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{\alpha}{4} e^{\alpha (z+c)} \Big(\mathbf{H}_0(\alpha r) + Y_0(\alpha r) - 2i J_0 (\alpha r) + \frac{2}{\pi} \int\limits_{z+c}^0 \frac{e^{-\alpha \eta}}{\sqrt{r^2 + \eta^2}} d\eta \Big), }[/math]

where [math]\displaystyle{ J_0 }[/math] and [math]\displaystyle{ Y_0 }[/math] are the Bessel functions of order zero of the first and second kind and [math]\displaystyle{ \mathbf{H}_0 }[/math] is the Struve function of order zero.

The expression due to Peter and Meylan 2004 is

[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \Big) \frac{\eta^2}{\eta^2+\alpha^2} \Big( \cos \eta c + \frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. }[/math]