Difference between revisions of "Free-Surface Green Function"
Line 31: | Line 31: | ||
= Three Dimensional Representations = | = Three Dimensional Representations = | ||
+ | |||
+ | Let <math>(r,\theta)</math> be spherical coordinates such that | ||
+ | |||
+ | <math> | ||
+ | x - a = r \cos \theta,\, | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | y - b = r \sin \theta,\, | ||
+ | </math> | ||
+ | |||
+ | and let <math>R_0</math> and <math>R_1</math> denote the | ||
+ | distance from the source point <math>\mathbf{\xi} = (a,b,c)</math> | ||
+ | and the distance from the ''mirror'' source point | ||
+ | <math>\bar{\mathbf{\xi}} = (a,b,-c)</math> respectively, | ||
+ | <math>R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2</math> and <math>R_1^2 = (x-a)^2 + (y-b)^2 + | ||
+ | (z+c)^2</math>. | ||
==[[Finite Depth]]== | ==[[Finite Depth]]== | ||
Line 50: | Line 67: | ||
In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was | In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was | ||
− | given by | + | given by ''Havelock'' ([[Havelock_1955a|Havelock 1955]]) as |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<math> | <math> | ||
Line 79: | Line 79: | ||
where <math>H^{(1)}_0</math> and <math>K_0</math> denote the Hankel function of the first | where <math>H^{(1)}_0</math> and <math>K_0</math> denote the Hankel function of the first | ||
kind and the modified Bessel function of the second kind, both of | kind and the modified Bessel function of the second kind, both of | ||
− | order zero as defined in | + | order zero as defined in [[Abramowitz_Stegun_1970|Abramowitz and Stegun 1970]]. |
− | + | This Green function will be referred to as | |
− | Havelock | + | ''Havelock's'' Green function. It should be noted that ''Havelock's'' Green |
function can also be written in the following closely related form, | function can also be written in the following closely related form, | ||
Line 92: | Line 92: | ||
</math> | </math> | ||
− | + | [[Linton_McIver_2001a|Linton and McIver 2001]]. An equivalent representation is due to | |
− | + | [[Kim_1965a|Kim 1965]] for <math>r>0</math>, although implicitly given in the work of | |
− | Havelock | + | ''Havelock'', and is given by |
<math> | <math> |
Revision as of 03:16, 26 May 2006
Introduction
Equations for the Green function
The Free-Surface Green function is a function which satisfies the following equation (in Finite Depth) [math]\displaystyle{ \mathbf{x}=(x,y,z) }[/math] and [math]\displaystyle{ \mathbf{\xi}=(a,b,c) }[/math]
[math]\displaystyle{ \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{\xi})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=h, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}\phi,\,z\in\Gamma_s, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = L\phi, \, z\in\Gamma_w. }[/math]
where [math]\displaystyle{ k_{\infty} }[/math] is the wavenumber in Infinite Depth which is given by [math]\displaystyle{ k_{\infty}=\omega^2/g }[/math] where [math]\displaystyle{ g }[/math] is gravity.
Two Dimensional Representations
Many expressions for the Green function have been given. In two dimensions it can be written as
Three Dimensional Representations
Let [math]\displaystyle{ (r,\theta) }[/math] be spherical coordinates such that
[math]\displaystyle{ x - a = r \cos \theta,\, }[/math]
[math]\displaystyle{ y - b = r \sin \theta,\, }[/math]
and let [math]\displaystyle{ R_0 }[/math] and [math]\displaystyle{ R_1 }[/math] denote the distance from the source point [math]\displaystyle{ \mathbf{\xi} = (a,b,c) }[/math] and the distance from the mirror source point [math]\displaystyle{ \bar{\mathbf{\xi}} = (a,b,-c) }[/math] respectively, [math]\displaystyle{ R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2 }[/math] and [math]\displaystyle{ R_1^2 = (x-a)^2 + (y-b)^2 + (z+c)^2 }[/math].
Finite Depth
The most important representation of the finite depth free surface Green function is the eigenfunction expansion given by John 1950
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i}{2} \, \frac{\alpha^2-k^2}{(\alpha^2-k^2)d-\alpha}\, \cosh k(z+d)\, \cosh k(c+d) \, H_0^{(1)}(k r) + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{k_m^2+\alpha^2}{(k_m^2+\alpha^2)d-\alpha}\, \cos k_m(z+d)\, \cos k_m(c+d) \, K_0(k_m r), }[/math]
Infinite Depth
In three dimensions and infinite depth the Green function [math]\displaystyle{ G }[/math], for [math]\displaystyle{ r\gt 0 }[/math], was given by Havelock (Havelock 1955) as
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{1}{\pi^2} \int\limits_{0}^{\infty} \frac{\alpha}{\eta^2 + \alpha^2} \big( \alpha \cos \eta (z+c) - \eta \sin \eta (z+c) \big) K_0(\eta r) d\eta, }[/math]
where [math]\displaystyle{ H^{(1)}_0 }[/math] and [math]\displaystyle{ K_0 }[/math] denote the Hankel function of the first kind and the modified Bessel function of the second kind, both of order zero as defined in Abramowitz and Stegun 1970. This Green function will be referred to as Havelock's Green function. It should be noted that Havelock's Green function can also be written in the following closely related form,
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{2 \pi^2} \int\limits_{0}^{\infty} \frac{(\eta^2 - \alpha^2) \cos \eta (z+c) + 2 \eta \alpha \sin \eta (z+c)}{\eta^2 + \alpha^2} K_0(\eta r) d\eta }[/math]
Linton and McIver 2001. An equivalent representation is due to Kim 1965 for [math]\displaystyle{ r\gt 0 }[/math], although implicitly given in the work of Havelock, and is given by
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{\alpha}{4} e^{\alpha (z+c)} \Big(\mathbf{H}_0(\alpha r) + Y_0(\alpha r) - 2i J_0 (\alpha r) + \frac{2}{\pi} \int\limits_{z+c}^0 \frac{e^{-\alpha \eta}}{\sqrt{r^2 + \eta^2}} d\eta \Big), }[/math]
where [math]\displaystyle{ J_0 }[/math] and [math]\displaystyle{ Y_0 }[/math] are the Bessel functions of order zero of the first and second kind and [math]\displaystyle{ \mathbf{H}_0 }[/math] is the Struve function of order zero.
The expression due to Peter and Meylan 2004 is
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \Big) \frac{\eta^2}{\eta^2+\alpha^2} \Big( \cos \eta c + \frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. }[/math]