Difference between revisions of "Interaction Theory for Infinite Arrays"
Line 6: | Line 6: | ||
We start with the final system of equations of the [[Kagemoto and Yue Interaction Theory]], namely | We start with the final system of equations of the [[Kagemoto and Yue Interaction Theory]], namely | ||
+ | |||
<center><math> | <center><math> | ||
A_{m\mu}^l = \sum_{n=0}^{\infty} | A_{m\mu}^l = \sum_{n=0}^{\infty} | ||
Line 14: | Line 15: | ||
R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], | ||
</math></center> | </math></center> | ||
+ | |||
<math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>. | <math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>. | ||
Line 55: | Line 57: | ||
A_{m\mu} = \sum_{n=0}^{\infty} | A_{m\mu} = \sum_{n=0}^{\infty} | ||
\sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu} \Big[ \tilde{D}_{n\nu} + (-1)^\nu | \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu} \Big[ \tilde{D}_{n\nu} + (-1)^\nu | ||
− | \sum_{\tau = -\infty}^{\infty} A_{n\tau} \sigma^n_{\tau-\nu} \Big] | + | \sum_{\tau = -\infty}^{\infty} A_{n\tau} \sigma^n_{\tau-\nu} \Big], |
</math></center> | </math></center> | ||
+ | <math>m \in \mathbb{N}</math>, <math>\mu,l \in \mathbb{Z}</math>. | ||
+ | Note that this system of equations is for the body centred at the origin. The scattered waves of all other bodies can be obtained by the simple formula <math>A_{m\mu}^l = P_l A_{m\mu}</math>. | ||
[[Category:Infinite Array]] | [[Category:Infinite Array]] |
Revision as of 14:52, 18 July 2006
Introduction
We want to use the Kagemoto and Yue Interaction Theory to derive a system of equations for the infinite array.
System of equations
We start with the final system of equations of the Kagemoto and Yue Interaction Theory, namely
[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,N }[/math].
For the infinite array, some simplifications of this system can be made. First of all, the bodies are aligned in an evenly spaced array. Denoting the spacing by [math]\displaystyle{ R }[/math], we have [math]\displaystyle{ R_{jl} = |j-l| R }[/math] and
Moreover, owing to the periodicity of the array as well as the ambient wave, the coefficients [math]\displaystyle{ A_{m\mu}^l }[/math] can be written as [math]\displaystyle{ A_{m\mu}^l = P_l A_{m\mu}^0 = P_l A_{m\mu} }[/math], where the phase factor [math]\displaystyle{ P_l }[/math] is given by
where [math]\displaystyle{ \chi }[/math] is the angle which the direction of the ambient waves makes with the [math]\displaystyle{ x }[/math]-axis. The same can be done for the coefficients of the ambient wave, i.e. [math]\displaystyle{ \tilde{D}_{n\nu}^{l} = P_l \tilde{D}_{n\nu} }[/math].
Therefore, the system simplifies to
[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu,l \in \mathbb{Z} }[/math].
Introducing the constants
which can be evaluated separately since they do not contain any unknowns, the problem reduces to
[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu,l \in \mathbb{Z} }[/math]. Note that this system of equations is for the body centred at the origin. The scattered waves of all other bodies can be obtained by the simple formula [math]\displaystyle{ A_{m\mu}^l = P_l A_{m\mu} }[/math].