Difference between revisions of "Conservation Laws and Boundary Conditions"

From WikiWaves
Jump to navigationJump to search
Line 26: Line 26:
  
 
<center><math> \nabla \cdot \nabla \Phi = 0 \Rightarrow \nabla^2 \Phi = 0 </math></center> or
 
<center><math> \nabla \cdot \nabla \Phi = 0 \Rightarrow \nabla^2 \Phi = 0 </math></center> or
 +
 +
<center><math> \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} </math></center>

Revision as of 05:11, 17 January 2007

The Ocean Environment

Non Linear Free-surface Condition

(X,Y,Z): Earth Fixed Coordinate System X: Fixed Eulerian Vector v: Flow Velocity Vector At X

Free Surface Elevation

Assume ideal fluid (No shear stresses) and irrotational flow:

[math]\displaystyle{ \nabla \times \overrightarrow{V} = 0 }[/math]

Let:

[math]\displaystyle{ \overrightarrow{V} = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0 }[/math]

Where [math]\displaystyle{ \Phi(\overrightarrow{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.

Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.

Conservation of mass:

[math]\displaystyle{ \nabla \cdot \overrightarrow{V} = 0 \Rightarrow }[/math]


[math]\displaystyle{ \nabla \cdot \nabla \Phi = 0 \Rightarrow \nabla^2 \Phi = 0 }[/math]

or

[math]\displaystyle{ \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} }[/math]