Difference between revisions of "Conservation Laws and Boundary Conditions"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
==The Ocean Environment
+
== The Ocean Environment
  
===Non Linear Free-surface Condition
+
=== Non Linear Free-surface Condition
  
<math>\bullet (X,Y,Z)</math>: Earth Fixed Coordinate System \br
+
<math>  
<math>\vec X</math>: Fixed Eulerian Vector
+
\begin{matrix}
<math>\vec V</math>: Flow Velocity Vector at <math>\vec X</math>
+
&\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\
<math>\zeta</math>: Free Surface Elevation
+
&\vec X         &: &\mbox{Fixed Eulerian Vector} \\
 +
&\vec V         &: &\mbox{Flow Velocity Vector at} \  \vec X \\
 +
&\zeta         &: &\mbox{Free Surface Elevation}
 +
\end{matrix} </math>
  
Assume ideal fluid (No shear stresses) and irrotational flow:
+
<math>\bullet</math> Assume ideal fluid (No shear stresses) and irrotational flow:
  
<center><math>\nabla \times \overrightarrow{V} = 0</math></center>
+
<center><math>\nabla \times \vec V = 0</math></center>
  
 
Let:
 
Let:
  
<center><math> \overrightarrow{V} = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0 </math></center>
+
<center><math>
 +
\vec V = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0
 +
</math></center>
  
Where <math>\Phi(\overrightarrow{X},t)</math> is the velocity potential assumed sufficiently continuously differentiable.
+
Where <math>\Phi(\vec{X},t)</math> is the velocity potential assumed sufficiently continuously differentiable.
  
Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
+
<math>\bullet</math> Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
  
Conservation of mass:
+
<math>\bullet</math> Conservation of mass:
  
<center><math> \nabla \cdot \overrightarrow{V} = 0 \Rightarrow</math></center>
+
<center><math> \nabla \cdot \vec V = 0 \Rightarrow </math></center>
  
  

Revision as of 05:44, 17 January 2007

== The Ocean Environment

=== Non Linear Free-surface Condition

[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]

[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:

[math]\displaystyle{ \nabla \times \vec V = 0 }[/math]

Let:

[math]\displaystyle{ \vec V = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0 }[/math]

Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.

[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.

[math]\displaystyle{ \bullet }[/math] Conservation of mass:

[math]\displaystyle{ \nabla \cdot \vec V = 0 \Rightarrow }[/math]


[math]\displaystyle{ \nabla \cdot \nabla \Phi = 0 \Rightarrow \nabla^2 \Phi = 0 }[/math]

or

[math]\displaystyle{ \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} }[/math]

[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.