Difference between revisions of "Conservation Laws and Boundary Conditions"
Line 1: | Line 1: | ||
− | ==The Ocean Environment | + | == The Ocean Environment |
− | ===Non Linear Free-surface Condition | + | === Non Linear Free-surface Condition |
− | <math>\bullet (X,Y,Z) | + | <math> |
− | + | \begin{matrix} | |
− | + | &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ | |
− | + | &\vec X &: &\mbox{Fixed Eulerian Vector} \\ | |
+ | &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ | ||
+ | &\zeta &: &\mbox{Free Surface Elevation} | ||
+ | \end{matrix} </math> | ||
− | Assume ideal fluid (No shear stresses) and irrotational flow: | + | <math>\bullet</math> Assume ideal fluid (No shear stresses) and irrotational flow: |
− | <center><math>\nabla \times \ | + | <center><math>\nabla \times \vec V = 0</math></center> |
Let: | Let: | ||
− | <center><math> \ | + | <center><math> |
+ | \vec V = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0 | ||
+ | </math></center> | ||
− | Where <math>\Phi(\ | + | Where <math>\Phi(\vec{X},t)</math> is the velocity potential assumed sufficiently continuously differentiable. |
− | Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted. | + | <math>\bullet</math> Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted. |
− | Conservation of mass: | + | <math>\bullet</math> Conservation of mass: |
− | <center><math> \nabla \cdot \ | + | <center><math> \nabla \cdot \vec V = 0 \Rightarrow </math></center> |
Revision as of 05:44, 17 January 2007
== The Ocean Environment
=== Non Linear Free-surface Condition
[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]
[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
[math]\displaystyle{ \bullet }[/math] Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.