Difference between revisions of "Conservation Laws and Boundary Conditions"
Line 35: | Line 35: | ||
<math>\bullet</math> Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity. | <math>\bullet</math> Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity. | ||
+ | |||
+ | <center> <math> | ||
+ | \frac{\partial \vec V}{\partial t} + (\vec V \cdot \nabla) \vec V = - \frac1{\rho} \nabla P + \vec g | ||
+ | </math> </center> |
Revision as of 05:49, 17 January 2007
The Ocean Environment
Non Linear Free-surface Condition
[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]
[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
[math]\displaystyle{ \bullet }[/math] Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.