Difference between revisions of "Conservation Laws and Boundary Conditions"
Line 61: | Line 61: | ||
<center><math> \nabla F( \vec X, t) =0 \quad \Longrightarrow \quad F (\vec X, t) = \mathbb{C} </math></center> | <center><math> \nabla F( \vec X, t) =0 \quad \Longrightarrow \quad F (\vec X, t) = \mathbb{C} </math></center> | ||
− | where <math> mathbb{C} = \mbox{constant} </math> | + | where <math> \mathbb{C} = \mbox{constant} </math> |
Bernovlli's equation follows: | Bernovlli's equation follows: |
Revision as of 09:47, 17 January 2007
The Ocean Environment
Non Linear Free-surface Condition
[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]
[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
[math]\displaystyle{ \bullet }[/math] Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.
[math]\displaystyle{ \bullet }[/math] Vector Identity:
in irrotational flow: [math]\displaystyle{ \nabla \times \vec V = 0 }[/math], thus Euler's equations become:
Upon substitution:
where [math]\displaystyle{ \mathbb{C} = \mbox{constant} }[/math]
Bernovlli's equation follows:
or