Difference between revisions of "Wave Energy Density and Flux"
From WikiWaves
Jump to navigationJump to searchLine 7: | Line 7: | ||
Mean energy over unit horizongtal surface area <math> S \, </math> : | Mean energy over unit horizongtal surface area <math> S \, </math> : | ||
− | <center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\xi(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} | + | <center><math> \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\xi(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} = \frac{1}{2} \rho \overline{ \int_{-H}^{\xi(t)} V^2 dZ} + \overline{ \frac{1}{2} \rho g ( \xi^2 - H^2 ) } </math></center> |
Revision as of 08:59, 26 January 2007
Energy Density, Energy Flux and Momentum Flux of Surface Waves
[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :
Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :