Difference between revisions of "Wave Momentum Flux"
Line 1: | Line 1: | ||
<u> Momentum flux in potential flow </u> | <u> Momentum flux in potential flow </u> | ||
− | <center><math> \frac{d\overrightarrow{M(t)}}{dt} = \rho \frac{d}{dt} \iiint_V(t) \ | + | <center><math> \frac{d\overrightarrow{M(t)}}{dt} = \rho \frac{d}{dt} \iiint_V(t) \overrightarrow V dV = \rho \iiint_V(t) \frac{\partial\overrightarrow{V}}{\partial t} dV + \rho \oint_{S(t)} \overrightarrow{V} U_n dS, </math></center> |
by virtue of the transport theorem | by virtue of the transport theorem | ||
Invoking Euler's equations in inviscid flow | Invoking Euler's equations in inviscid flow | ||
− | <center><math> \frac{\partial\ | + | <center><math> \frac{\partial\overrightarrow{V}}{\partial t} + (\overrightarrow{V} \cdot \nabla ) \overrightarrow V = - \frac{1}{e} \nabla P + \overrightarrow g </math></center> |
We may recast the rate of change of the momentum (<math> \equiv \, </math> momentum flux) in the form | We may recast the rate of change of the momentum (<math> \equiv \, </math> momentum flux) in the form | ||
− | <center><math> \frac{d\overline{M(t)}}{dt} = - \rho \iiint_V(t) [ \nabla ( \frac{P}{\rho} + g Z ) + ( \ | + | <center><math> \frac{d\overline{M(t)}}{dt} = - \rho \iiint_V(t) [ \nabla ( \frac{P}{\rho} + g Z ) + ( \overrightarrow{V} \cdot \nabla ) \overrightarrow{V} ] dV + \rho \oint_{s(t)} \overrightarrow{V} U_n dS </math></center> |
So far <math> V(t)\, </math> is and arbitrary closed time dependent volume bounded by the time dependent surface <math> S(t)\, </math>. Here we need to invoke an important and complex vector theorem. | So far <math> V(t)\, </math> is and arbitrary closed time dependent volume bounded by the time dependent surface <math> S(t)\, </math>. Here we need to invoke an important and complex vector theorem. | ||
Line 16: | Line 16: | ||
Recall from the proof of Bernoulli's equation that: | Recall from the proof of Bernoulli's equation that: | ||
− | <center><math> (\ | + | <center><math> (\overrightarrow{V} \cdot \nabla ) \overrightarrow{V} = \nabla ( \frac{1}{2} \overrightarrow{V} \cdot {V} ) - \overrightarrow{V} \times (\nabla \times \overrightarrow{V} ) </math></center> |
By virtue of Gauss's vector theorem: | By virtue of Gauss's vector theorem: | ||
− | <center><math> \iiint_{V(t)} \nabla ( \frac{1}{2} \ | + | <center><math> \iiint_{V(t)} \nabla ( \frac{1}{2} \overrightarrow{V} \cdot \overrightarrow{V} ) dV = \frac{1}{2} \oint_{S(t)} \overrightarrow{V} \cdot \overrightarrow{V} \overrightarrow{n} dS </math></center> |
− | where in potential flow: <math> \ | + | where in potential flow: <math> \overrightarrow{V} = \nabla \Phi \,</math>. |
In potential flow it can be shown that: | In potential flow it can be shown that: | ||
− | <center><math> \oint_{S(t)} \frac{1}{2} ( \ | + | <center><math> \oint_{S(t)} \frac{1}{2} ( \overrightarrow{V} \cdot \overrightarrow{V} ) \overrightarrow{n} dS = \oint_{S(t)} \frac{\partial\Phi}{\partial n} \nabla \Phi dS = \oint_{S(t)} V_n \overrightarrow{V} dS </math></center> |
Proof left as an exercise! Just prove that for <math> \nabla^2 \Phi = 0 \, </math>; | Proof left as an exercise! Just prove that for <math> \nabla^2 \Phi = 0 \, </math>; | ||
− | <center><math> \oint_S \frac{1}{2} ( \nabla\Phi \cdot \nabla\Phi) \ | + | <center><math> \oint_S \frac{1}{2} ( \nabla\Phi \cdot \nabla\Phi) \overrightarrow{n} dS \equiv \oint_S \frac{\partial\Phi}{\partial n} \nabla\Phi dS. </math></center> |
Revision as of 23:15, 16 February 2007
Momentum flux in potential flow
by virtue of the transport theorem
Invoking Euler's equations in inviscid flow
We may recast the rate of change of the momentum ([math]\displaystyle{ \equiv \, }[/math] momentum flux) in the form
So far [math]\displaystyle{ V(t)\, }[/math] is and arbitrary closed time dependent volume bounded by the time dependent surface [math]\displaystyle{ S(t)\, }[/math]. Here we need to invoke an important and complex vector theorem.
Recall from the proof of Bernoulli's equation that:
By virtue of Gauss's vector theorem:
where in potential flow: [math]\displaystyle{ \overrightarrow{V} = \nabla \Phi \, }[/math].
In potential flow it can be shown that:
Proof left as an exercise! Just prove that for [math]\displaystyle{ \nabla^2 \Phi = 0 \, }[/math];