Difference between revisions of "Wave Momentum Flux"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
 
<u> Momentum flux in potential flow </u>
 
<u> Momentum flux in potential flow </u>
  
<center><math> \frac{d\overrightarrow{M(t)}}{dt} = \rho \frac{d}{dt} \iiint_V(t) \vec V dV = \rho \iiint_V(t) \frac{\partial\vec{V}}{\partial t} dV + \rho \oint_{S(t)} \vec{V} U_n dS, </math></center>
+
<center><math> \frac{d\overrightarrow{M(t)}}{dt} = \rho \frac{d}{dt} \iiint_V(t) \overrightarrow V dV = \rho \iiint_V(t) \frac{\partial\overrightarrow{V}}{\partial t} dV + \rho \oint_{S(t)} \overrightarrow{V} U_n dS, </math></center>
 
by virtue of the transport theorem
 
by virtue of the transport theorem
  
 
Invoking Euler's equations in inviscid flow
 
Invoking Euler's equations in inviscid flow
  
<center><math> \frac{\partial\vec{V}}{\partial t} + (\vec{V} \cdot \nabla ) \vec V = - \frac{1}{e} \nabla P + \vec g </math></center>
+
<center><math> \frac{\partial\overrightarrow{V}}{\partial t} + (\overrightarrow{V} \cdot \nabla ) \overrightarrow V = - \frac{1}{e} \nabla P + \overrightarrow g </math></center>
  
 
We may recast the rate of change of the momentum (<math> \equiv \, </math> momentum flux) in the form
 
We may recast the rate of change of the momentum (<math> \equiv \, </math> momentum flux) in the form
  
<center><math> \frac{d\overline{M(t)}}{dt} = - \rho \iiint_V(t) [ \nabla ( \frac{P}{\rho} + g Z ) + ( \vec{V} \cdot \nabla ) \vec{V} ] dV + \rho \oint_{s(t)} \vec{V} U_n dS </math></center>
+
<center><math> \frac{d\overline{M(t)}}{dt} = - \rho \iiint_V(t) [ \nabla ( \frac{P}{\rho} + g Z ) + ( \overrightarrow{V} \cdot \nabla ) \overrightarrow{V} ] dV + \rho \oint_{s(t)} \overrightarrow{V} U_n dS </math></center>
  
 
So far <math> V(t)\, </math> is and arbitrary closed time dependent volume bounded by the time dependent surface <math> S(t)\, </math>. Here we need to invoke an important and complex vector theorem.
 
So far <math> V(t)\, </math> is and arbitrary closed time dependent volume bounded by the time dependent surface <math> S(t)\, </math>. Here we need to invoke an important and complex vector theorem.
Line 16: Line 16:
 
Recall from the proof of Bernoulli's equation that:
 
Recall from the proof of Bernoulli's equation that:
  
<center><math> (\vec{V} \cdot \nabla ) \vec{V} = \nabla ( \frac{1}{2} \vec{V} \cdot {V} ) - \vec{V} \times (\nabla \times \vec{V} ) </math></center>
+
<center><math> (\overrightarrow{V} \cdot \nabla ) \overrightarrow{V} = \nabla ( \frac{1}{2} \overrightarrow{V} \cdot {V} ) - \overrightarrow{V} \times (\nabla \times \overrightarrow{V} ) </math></center>
  
 
By virtue of Gauss's vector theorem:
 
By virtue of Gauss's vector theorem:
  
<center><math> \iiint_{V(t)} \nabla ( \frac{1}{2} \vec{V} \cdot \vec{V} ) dV = \frac{1}{2} \oint_{S(t)} \vec{V} \cdot \vec{V} \vec{n} dS </math></center>
+
<center><math> \iiint_{V(t)} \nabla ( \frac{1}{2} \overrightarrow{V} \cdot \overrightarrow{V} ) dV = \frac{1}{2} \oint_{S(t)} \overrightarrow{V} \cdot \overrightarrow{V} \overrightarrow{n} dS </math></center>
  
where in potential flow: <math> \vec{V} = \nabla \Phi \,</math>.
+
where in potential flow: <math> \overrightarrow{V} = \nabla \Phi \,</math>.
  
 
In potential flow it can be shown that:
 
In potential flow it can be shown that:
  
<center><math> \oint_{S(t)} \frac{1}{2} ( \vec{V} \cdot \vec{V} ) \vec{n} dS = \oint_{S(t)} \frac{\partial\Phi}{\partial n} \nabla \Phi dS = \oint_{S(t)} V_n \vec{V} dS </math></center>
+
<center><math> \oint_{S(t)} \frac{1}{2} ( \overrightarrow{V} \cdot \overrightarrow{V} ) \overrightarrow{n} dS = \oint_{S(t)} \frac{\partial\Phi}{\partial n} \nabla \Phi dS = \oint_{S(t)} V_n \overrightarrow{V} dS </math></center>
  
 
Proof left as an exercise! Just prove that for <math> \nabla^2 \Phi = 0 \, </math>;
 
Proof left as an exercise! Just prove that for <math> \nabla^2 \Phi = 0 \, </math>;
  
<center><math> \oint_S \frac{1}{2} ( \nabla\Phi \cdot \nabla\Phi) \vec{n} dS \equiv \oint_S \frac{\partial\Phi}{\partial n} \nabla\Phi dS. </math></center>
+
<center><math> \oint_S \frac{1}{2} ( \nabla\Phi \cdot \nabla\Phi) \overrightarrow{n} dS \equiv \oint_S \frac{\partial\Phi}{\partial n} \nabla\Phi dS. </math></center>

Revision as of 23:15, 16 February 2007

Momentum flux in potential flow

[math]\displaystyle{ \frac{d\overrightarrow{M(t)}}{dt} = \rho \frac{d}{dt} \iiint_V(t) \overrightarrow V dV = \rho \iiint_V(t) \frac{\partial\overrightarrow{V}}{\partial t} dV + \rho \oint_{S(t)} \overrightarrow{V} U_n dS, }[/math]

by virtue of the transport theorem

Invoking Euler's equations in inviscid flow

[math]\displaystyle{ \frac{\partial\overrightarrow{V}}{\partial t} + (\overrightarrow{V} \cdot \nabla ) \overrightarrow V = - \frac{1}{e} \nabla P + \overrightarrow g }[/math]

We may recast the rate of change of the momentum ([math]\displaystyle{ \equiv \, }[/math] momentum flux) in the form

[math]\displaystyle{ \frac{d\overline{M(t)}}{dt} = - \rho \iiint_V(t) [ \nabla ( \frac{P}{\rho} + g Z ) + ( \overrightarrow{V} \cdot \nabla ) \overrightarrow{V} ] dV + \rho \oint_{s(t)} \overrightarrow{V} U_n dS }[/math]

So far [math]\displaystyle{ V(t)\, }[/math] is and arbitrary closed time dependent volume bounded by the time dependent surface [math]\displaystyle{ S(t)\, }[/math]. Here we need to invoke an important and complex vector theorem.

Recall from the proof of Bernoulli's equation that:

[math]\displaystyle{ (\overrightarrow{V} \cdot \nabla ) \overrightarrow{V} = \nabla ( \frac{1}{2} \overrightarrow{V} \cdot {V} ) - \overrightarrow{V} \times (\nabla \times \overrightarrow{V} ) }[/math]

By virtue of Gauss's vector theorem:

[math]\displaystyle{ \iiint_{V(t)} \nabla ( \frac{1}{2} \overrightarrow{V} \cdot \overrightarrow{V} ) dV = \frac{1}{2} \oint_{S(t)} \overrightarrow{V} \cdot \overrightarrow{V} \overrightarrow{n} dS }[/math]

where in potential flow: [math]\displaystyle{ \overrightarrow{V} = \nabla \Phi \, }[/math].

In potential flow it can be shown that:

[math]\displaystyle{ \oint_{S(t)} \frac{1}{2} ( \overrightarrow{V} \cdot \overrightarrow{V} ) \overrightarrow{n} dS = \oint_{S(t)} \frac{\partial\Phi}{\partial n} \nabla \Phi dS = \oint_{S(t)} V_n \overrightarrow{V} dS }[/math]

Proof left as an exercise! Just prove that for [math]\displaystyle{ \nabla^2 \Phi = 0 \, }[/math];

[math]\displaystyle{ \oint_S \frac{1}{2} ( \nabla\Phi \cdot \nabla\Phi) \overrightarrow{n} dS \equiv \oint_S \frac{\partial\Phi}{\partial n} \nabla\Phi dS. }[/math]