Difference between revisions of "Wave Momentum Flux"

From WikiWaves
Jump to navigationJump to search
Line 34: Line 34:
 
Upon substitution inthe momentum flux formula, we obtain:
 
Upon substitution inthe momentum flux formula, we obtain:
  
<center><math> \frac{d\vec{M}}{dt} = - \rho \oint_S(t) [ ( \frac{P}{\rho} + gZ ) \vec{n} + \vec{V} (V_n - U_n )] dS </math></center>
+
<center><math> \frac{d\overrightarrow{M}}{dt} = - \rho \oint_S(t) [ ( \frac{P}{\rho} + gZ ) \overrightarrow{n} + \overrightarrow{V} (V_n - U_n )] dS </math></center>
  
Following an application of the vector theorem of Gauss. In the expression above <math> \vec{n} \, </math> is the unit vector pointing out of the volume <math> V(t), V_n = \vec{n} \cdot \nabla \Phi </math> and <math U_n \, </math> is the outward normal velocity of the surface <math> S(t)\, </math>.
+
Following an application of the vector theorem of Gauss. In the expression above <math> \vec{n} \, </math> is the unit vector pointing out of the volume <math> V(t), V_n = \vec{n} \cdot \nabla \Phi </math> and <math> U_n \, </math> is the outward normal velocity of the surface <math> S(t)\, </math>.
  
 
This formula is of central importance in potential flow marine hydrodynamics because the rate of change of the linear momentum defined above is just <math> \pm \,</math> the force acting on the fluid volume. When its mean value can be shown to vanish, important force expressions on solid boundaries follow and will be derived in what follows.
 
This formula is of central importance in potential flow marine hydrodynamics because the rate of change of the linear momentum defined above is just <math> \pm \,</math> the force acting on the fluid volume. When its mean value can be shown to vanish, important force expressions on solid boundaries follow and will be derived in what follows.

Revision as of 23:32, 16 February 2007

Momentum flux in potential flow

[math]\displaystyle{ \frac{d\overrightarrow{M(t)}}{dt} = \rho \frac{d}{dt} \iiint_V(t) \overrightarrow V dV = \rho \iiint_V(t) \frac{\partial\overrightarrow{V}}{\partial t} dV + \rho \oint_{S(t)} \overrightarrow{V} U_n dS, }[/math]

by virtue of the transport theorem

Invoking Euler's equations in inviscid flow

[math]\displaystyle{ \frac{\partial\overrightarrow{V}}{\partial t} + (\overrightarrow{V} \cdot \nabla ) \overrightarrow V = - \frac{1}{e} \nabla P + \overrightarrow g }[/math]

We may recast the rate of change of the momentum ([math]\displaystyle{ \equiv \, }[/math] momentum flux) in the form

[math]\displaystyle{ \frac{d\overrightarrow{M(t)}}{dt} = - \rho \iiint_V(t) [ \nabla ( \frac{P}{\rho} + g Z ) + ( \overrightarrow{V} \cdot \nabla ) \overrightarrow{V} ] dV + \rho \oint_{s(t)} \overrightarrow{V} U_n dS }[/math]

So far [math]\displaystyle{ V(t)\, }[/math] is and arbitrary closed time dependent volume bounded by the time dependent surface [math]\displaystyle{ S(t)\, }[/math]. Here we need to invoke an important and complex vector theorem.

Recall from the proof of Bernoulli's equation that:

[math]\displaystyle{ (\overrightarrow{V} \cdot \nabla ) \overrightarrow{V} = \nabla ( \frac{1}{2} \overrightarrow{V} \cdot {V} ) - \overrightarrow{V} \times (\nabla \times \overrightarrow{V} ) }[/math]

By virtue of Gauss's vector theorem:

[math]\displaystyle{ \iiint_{V(t)} \nabla ( \frac{1}{2} \overrightarrow{V} \cdot \overrightarrow{V} ) dV = \frac{1}{2} \oint_{S(t)} \overrightarrow{V} \cdot \overrightarrow{V} \overrightarrow{n} dS }[/math]

where in potential flow: [math]\displaystyle{ \overrightarrow{V} = \nabla \Phi \, }[/math].

In potential flow it can be shown that:

[math]\displaystyle{ \oint_{S(t)} \frac{1}{2} ( \overrightarrow{V} \cdot \overrightarrow{V} ) \overrightarrow{n} dS = \oint_{S(t)} \frac{\partial\Phi}{\partial n} \nabla \Phi dS = \oint_{S(t)} V_n \overrightarrow{V} dS }[/math]

Proof left as an exercise! Just prove that for [math]\displaystyle{ \nabla^2 \Phi = 0 \, }[/math];

[math]\displaystyle{ \oint_S \frac{1}{2} ( \nabla\Phi \cdot \nabla\Phi) \overrightarrow{n} dS \equiv \oint_S \frac{\partial\Phi}{\partial n} \nabla\Phi dS. }[/math]

Upon substitution inthe momentum flux formula, we obtain:

[math]\displaystyle{ \frac{d\overrightarrow{M}}{dt} = - \rho \oint_S(t) [ ( \frac{P}{\rho} + gZ ) \overrightarrow{n} + \overrightarrow{V} (V_n - U_n )] dS }[/math]

Following an application of the vector theorem of Gauss. In the expression above [math]\displaystyle{ \vec{n} \, }[/math] is the unit vector pointing out of the volume [math]\displaystyle{ V(t), V_n = \vec{n} \cdot \nabla \Phi }[/math] and [math]\displaystyle{ U_n \, }[/math] is the outward normal velocity of the surface [math]\displaystyle{ S(t)\, }[/math].

This formula is of central importance in potential flow marine hydrodynamics because the rate of change of the linear momentum defined above is just [math]\displaystyle{ \pm \, }[/math] the force acting on the fluid volume. When its mean value can be shown to vanish, important force expressions on solid boundaries follow and will be derived in what follows.