Difference between revisions of "Wavemaker Theory"
Line 47: | Line 47: | ||
<u> Laplace </u>: <math> \psi_XX + \psi_ZZ = 0, \, </math> verify for all <math> \lambda\,</math>. | <u> Laplace </u>: <math> \psi_XX + \psi_ZZ = 0, \, </math> verify for all <math> \lambda\,</math>. | ||
− | <u> FS condition </u>: <math> \psi_Z - \frac{\omega^2}{g} \psi = 0 \Longrightarrow </math> | + | <u> FS condition </u>: <math> \psi_Z - \frac{\omega^2}{g} \psi = 0 \qquad \qquad \Longrightarrow \quad - \lambda \sin \lambda H - \frac{\omega^2}{g} \cos \lambda H = 0 </math> |
− | <center><math> | + | <center><math> \Longrightarrow \quad \lambda \tan \lambda H = - \nu \equiv \frac{\omega^2}{g} </math></center> |
− | <center><math> | + | <u> Seafloor condition </u>: <math> \psi_Z = 0, Z=-H \, </math> |
+ | |||
+ | So for the non-wavelike modes <math> \psi, \lambda \,</math> must satisfy the "dispersion" relation | ||
+ | |||
+ | <center><math> \lambda \tan \lambda H = - \nu = - \frac{\omega^2}{g} < 0 </math></center> | ||
+ | |||
+ | For positive values of <math> \lambda \, </math> so that <math> e^{-\lambda X} \to 0, X \to + \infty \, </math>. | ||
+ | |||
+ | Values of <math>\lambda_i \, </math> satisfying the dispersion relation follow from the solution of the non-dimensional nolinear equation | ||
+ | |||
+ | <center><math> \tan \omega = - \frac{\nu}{\omega}, \omega = \lambda H \, </math> | ||
+ | |||
+ | Solutions <math> \omega_i, i = 1, 2, \cdots \, </math> exist as shown above with <math> \omega_i \sim i \pi \, </math> for large <math> i \, </math>. These values are known as the eigenvalues or eigen-wavenumbers of the non-wavelike modes. The eigen-wavenumber of the wavelike solution <math> K\, </math> is given by the dispersion relation: | ||
− | < | + | <center><math> \frac{\omega^2 H}{g} = KH \tan KH. \, </math></center> |
Revision as of 10:20, 19 February 2007
A paddle with draft [math]\displaystyle{ D\, }[/math] is undergoing small amplitude horizontal oscillations with displacement
Where [math]\displaystyle{ \Pi\, }[/math] is assumed known and real. This excitation creates plane progressive waves with amplitude [math]\displaystyle{ A \, }[/math] down the tank. The principal objective of wavemaker theory is to determine [math]\displaystyle{ A \, }[/math] as a function of [math]\displaystyle{ \omega, \Pi \, }[/math] and [math]\displaystyle{ H \, }[/math].
Other types of wavemaker modes may be treated similarly.
In general, the wavemaker displacement at [math]\displaystyle{ X=0\, }[/math] may be written in the form
Where [math]\displaystyle{ \Pi(Z) \, }[/math] is a known function of [math]\displaystyle{ Z \, }[/math].
Let the total velocity potential be:
where
The first term is a velocity potential that represents a plane progressive regular wave down the tank with amplitude [math]\displaystyle{ A \, }[/math], yet unknown. Thus:
with:
The second component potential [math]\displaystyle{ \psi\, }[/math] is by definition a decaying disturbance as [math]\displaystyle{ X \to \infty \, }[/math] and otherwise satisfies the following boundary value problem:
The condition on the wavemaker [math]\displaystyle{ (X=0) \, }[/math] is yet to be enforced.
Note that unlike [math]\displaystyle{ \phi_\omega, \psi \, }[/math] is not representing a propagating wave down the tank so it is called a non-wavelike mode. Such modes do exist as will be shown below. On the wavemaker [math]\displaystyle{ (X=0) \, }[/math] the horizontal velocity due to [math]\displaystyle{ \phi_\omega\, }[/math] and that due to [math]\displaystyle{ \psi\, }[/math] must sum to the forcing velocity due to [math]\displaystyle{ \xi(t) \, }[/math].
Noting that [math]\displaystyle{ \phi_\omega \sim e^{-iKX} \cosh K(Z+H) \, }[/math] we will try [math]\displaystyle{ \phi \sim e^{-\lambda x} \cos \lambda (Z+H) \, }[/math]. Its conjugate which satisfies the condition of vanishing value as [math]\displaystyle{ X \to \infty }[/math] for [math]\displaystyle{ \lambda \gt 0 \, }[/math].
Laplace : [math]\displaystyle{ \psi_XX + \psi_ZZ = 0, \, }[/math] verify for all [math]\displaystyle{ \lambda\, }[/math].
FS condition : [math]\displaystyle{ \psi_Z - \frac{\omega^2}{g} \psi = 0 \qquad \qquad \Longrightarrow \quad - \lambda \sin \lambda H - \frac{\omega^2}{g} \cos \lambda H = 0 }[/math]
Seafloor condition : [math]\displaystyle{ \psi_Z = 0, Z=-H \, }[/math]
So for the non-wavelike modes [math]\displaystyle{ \psi, \lambda \, }[/math] must satisfy the "dispersion" relation
For positive values of [math]\displaystyle{ \lambda \, }[/math] so that [math]\displaystyle{ e^{-\lambda X} \to 0, X \to + \infty \, }[/math].
Values of [math]\displaystyle{ \lambda_i \, }[/math] satisfying the dispersion relation follow from the solution of the non-dimensional nolinear equation
Solutions [math]\displaystyle{ \omega_i, i = 1, 2, \cdots \, }[/math] exist as shown above with [math]\displaystyle{ \omega_i \sim i \pi \, }[/math] for large [math]\displaystyle{ i \, }[/math]. These values are known as the eigenvalues or eigen-wavenumbers of the non-wavelike modes. The eigen-wavenumber of the wavelike solution [math]\displaystyle{ K\, }[/math] is given by the dispersion relation: