Difference between revisions of "Linear Wave-Body Interaction"

From WikiWaves
Jump to navigationJump to search
 
Line 4: Line 4:
 
* The main concepts survive almost with no change in the more practical three-dimensional problem
 
* The main concepts survive almost with no change in the more practical three-dimensional problem
  
<center><math> \zeta(t): ambient wave elevation. Regular or random with definitions to be given below. </math></center>
+
<center><math> \zeta(t): \quad \mbox{ambient wave elevation. Regular or random with definitions to be given below}. \,</math></center>
  
<center><math> \xi_1(t): Body surge displacement </math></center>
+
<center><math> \xi_1(t): \quad \mbox{Body surge displacement} \,</math></center>
  
<center><math> \xi_3(t): Body heave displacement </math></center>
+
<center><math> \xi_3(t): \quad \mbox{Body heave displacement} \,</math></center>
  
<center><math> \xi_4(t): Body roll displacement </math></center>
+
<center><math> \xi_4(t): \quad \mbox{Body roll displacement} \,</math></center>
  
 
<u>Linear theory</u>
 
<u>Linear theory</u>

Revision as of 22:55, 23 February 2007

Linear wave-body interactions

  • Consider a plane progressive regular wave interacting with a floating body in two dimensions.
  • The main concepts survive almost with no change in the more practical three-dimensional problem
[math]\displaystyle{ \zeta(t): \quad \mbox{ambient wave elevation. Regular or random with definitions to be given below}. \, }[/math]
[math]\displaystyle{ \xi_1(t): \quad \mbox{Body surge displacement} \, }[/math]
[math]\displaystyle{ \xi_3(t): \quad \mbox{Body heave displacement} \, }[/math]
[math]\displaystyle{ \xi_4(t): \quad \mbox{Body roll displacement} \, }[/math]

Linear theory

  • Assume:
    [math]\displaystyle{ \left| \frac{\partial\zeta}{\partial x} \right| = O(\varepsilon) \ll 1 \, }[/math]

Small wave steepness. Very good assumption for gravity waves in most cases, except when waves are near breaking conditions.

  • Assume
    [math]\displaystyle{ \left| \frac{\xi_1}{A} \right| = O(\varepsilon) \ll 1 \, }[/math]