Difference between revisions of "Linear Wave-Body Interaction"
From WikiWaves
Jump to navigationJump to searchLine 4: | Line 4: | ||
* The main concepts survive almost with no change in the more practical three-dimensional problem | * The main concepts survive almost with no change in the more practical three-dimensional problem | ||
− | <center><math> \zeta(t): ambient wave elevation. Regular or random with definitions to be given below. </math></center> | + | <center><math> \zeta(t): \quad \mbox{ambient wave elevation. Regular or random with definitions to be given below}. \,</math></center> |
− | <center><math> \xi_1(t): Body surge displacement </math></center> | + | <center><math> \xi_1(t): \quad \mbox{Body surge displacement} \,</math></center> |
− | <center><math> \xi_3(t): Body heave displacement </math></center> | + | <center><math> \xi_3(t): \quad \mbox{Body heave displacement} \,</math></center> |
− | <center><math> \xi_4(t): Body roll displacement </math></center> | + | <center><math> \xi_4(t): \quad \mbox{Body roll displacement} \,</math></center> |
<u>Linear theory</u> | <u>Linear theory</u> |
Revision as of 22:55, 23 February 2007
Linear wave-body interactions
- Consider a plane progressive regular wave interacting with a floating body in two dimensions.
- The main concepts survive almost with no change in the more practical three-dimensional problem
Linear theory
- Assume:
[math]\displaystyle{ \left| \frac{\partial\zeta}{\partial x} \right| = O(\varepsilon) \ll 1 \, }[/math]
Small wave steepness. Very good assumption for gravity waves in most cases, except when waves are near breaking conditions.
- Assume
[math]\displaystyle{ \left| \frac{\xi_1}{A} \right| = O(\varepsilon) \ll 1 \, }[/math]