Difference between revisions of "Graf's Addition Theorem"

From WikiWaves
Jump to navigationJump to search
Line 15: Line 15:
 
Here, <math>(R_{jl},\varphi_{jl})</math>  are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>.  
 
Here, <math>(R_{jl},\varphi_{jl})</math>  are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>.  
  
This theorem form the basis for [[Kagemoto and Yue Interaction Theory]]. <math>K_\nu</math> and <math>H_\nu^{(1)}</math> are  
+
This theorem form the basis for [[Kagemoto and Yue Interaction Theory]]. <math>J_\nu</math>, <math>I_\nu</math>, <math>K_\nu</math>, and <math>H_\nu^{(1)}</math> are  
 
[http://en.wikipedia.org/wiki/Bessel_function Bessel functions].
 
[http://en.wikipedia.org/wiki/Bessel_function Bessel functions].
  
 
[[Category:Numerical Methods]]
 
[[Category:Numerical Methods]]
 
[[Category:Linear Water-Wave Theory]]
 
[[Category:Linear Water-Wave Theory]]

Revision as of 10:33, 28 March 2007

Graf's addition theorem for Bessel functions, given in Abramowitz and Stegun 1964, is

[math]\displaystyle{ H_\nu^{(1)}(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\eta R_{jl}) \, J_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]
[math]\displaystyle{ K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = \sum_{\mu = - \infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, }[/math]

which is valid provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math]. Here, [math]\displaystyle{ (R_{jl},\varphi_{jl}) }[/math] are the polar coordinates of the mean centre position of [math]\displaystyle{ \Delta_{l} }[/math] in the local coordinates of [math]\displaystyle{ \Delta_{j} }[/math].

This theorem form the basis for Kagemoto and Yue Interaction Theory. [math]\displaystyle{ J_\nu }[/math], [math]\displaystyle{ I_\nu }[/math], [math]\displaystyle{ K_\nu }[/math], and [math]\displaystyle{ H_\nu^{(1)} }[/math] are Bessel functions.