Difference between revisions of "Wave Scattering By A Vertical Circular Cylinder"

From WikiWaves
Jump to navigationJump to search
 
Line 3: Line 3:
 
This important flow accepts a closed-form analytical solution for arbitrary values of the wavelength <math>\lambda\,</math>. This was shown to be the case by Mccamy-Fuchs using separation of variables
 
This important flow accepts a closed-form analytical solution for arbitrary values of the wavelength <math>\lambda\,</math>. This was shown to be the case by Mccamy-Fuchs using separation of variables
  
<center><math> \Phi_I = \mathfrak{Re} \left\{\phi_I e^{i\omega t} \right \} \,</math></center>
+
<center><math> \Phi_I = \mathbf{Re} \left\{\phi_I e^{i\omega t} \right \} \,</math></center>
  
 
<center><math> \phi_I = \frac{i g A}{\omega} \frac{\cosh K(Z+H)}{\cosh K H} e^{-iKX} </math></center>
 
<center><math> \phi_I = \frac{i g A}{\omega} \frac{\cosh K(Z+H)}{\cosh K H} e^{-iKX} </math></center>
Line 38: Line 38:
 
Here we make use of the familiar identity:
 
Here we make use of the familiar identity:
  
<center><math> e^{-iKR\cos\theta} = \sum_{m=0}^{infty} \epsilon_m J_m ( K R } \cos m \theta </math></center>
+
<center><math> e^{-iKR\cos\theta} = \sum_{m=0}^{infty} \epsilon_m J_m ( K R ) \cos m \theta </math></center>
  
 
<center><math> \epsilon_m = \begin{Bmatrix}
 
<center><math> \epsilon_m = \begin{Bmatrix}
Line 56: Line 56:
  
 
<center><math> \begin{Bmatrix}
 
<center><math> \begin{Bmatrix}
   J_m ( K R } \\
+
   J_m ( K R ) \\
 
   Y_m ( K R )
 
   Y_m ( K R )
 
\end{Bmatrix} </math></center>
 
\end{Bmatrix} </math></center>
Line 64: Line 64:
 
As <math> R \to \infty\,</math>:
 
As <math> R \to \infty\,</math>:
  
<center><math> \psi(R,\theta) \nsim e^{-iKR + i\omega t} \,</math></center>
+
<center><math> \psi(R,\theta) \sim e^{-iKR + i\omega t} \,</math></center>
  
 
Also as <math> R \to \infty\, </math>:
 
Also as <math> R \to \infty\, </math>:
Line 74: Line 74:
 
Hence the Hankel function:
 
Hence the Hankel function:
  
<center><math> H_m^{(2)} ( K R } = J_m ( K R ) - i Y_m ( K R ) \,</math></center>
+
<center><math> H_m^{(2)} ( K R ) = J_m ( K R ) - i Y_m ( K R ) \,</math></center>
  
 
<center><math> \sim \left( \frac{2}{\pi K R} \right)^{1/2} e^{-i \left( K R - \frac{1}{2} m \pi - \frac{\pi}{4} \right)} </math></center>
 
<center><math> \sim \left( \frac{2}{\pi K R} \right)^{1/2} e^{-i \left( K R - \frac{1}{2} m \pi - \frac{\pi}{4} \right)} </math></center>
Line 84: Line 84:
 
With the constants <math> A_m \,</math> to be determined. The cylinder condition requires:
 
With the constants <math> A_m \,</math> to be determined. The cylinder condition requires:
  
<center><math> \left. \frac{\partial\psi}{\partial R} \right|_{R=a} = - \frac{\\partial}{\partial R} \sum_{m=0}^{\infty} \epsilon_m J_m ( K R ) \left.\cos m \theta \right|_{r=a} </math></center>
+
<center><math> \left. \frac{\partial\psi}{\partial R} \right|_{R=a} = - \frac{\partial}{\partial R} \sum_{m=0}^{\infty} \epsilon_m J_m ( K R ) \left.\cos m \theta \right|_{r=a} </math></center>
  
 
It follows that:
 
It follows that:
Line 114: Line 114:
 
The Surge exciting force is given by
 
The Surge exciting force is given by
  
<center><math> X_1 = \iint_{S_B} P n_1 dS = \mathbf{Re \left\{ \mathbf{X}_1 e^{i\omega t} \right\} </math></center>
+
<center><math> X_1 = \iint_{S_B} P n_1 dS = \mathbf{Re} \left\{ \mathbf{X}_1 e^{i\omega t} \right\} </math></center>
  
 
<center><math> \mathbf{X}_1 = \rho \int_{-\infty}^0 dZ \int_0^{2\pi} a d\theta \left( - i \omega \frac{i g A}{\omega} \right) e^{K Z} n_1 (\psi + x)_{R=a} </math></center>
 
<center><math> \mathbf{X}_1 = \rho \int_{-\infty}^0 dZ \int_0^{2\pi} a d\theta \left( - i \omega \frac{i g A}{\omega} \right) e^{K Z} n_1 (\psi + x)_{R=a} </math></center>
  
 
Simple algebra in this case of water of infinite depth leads to the expression.
 
Simple algebra in this case of water of infinite depth leads to the expression.

Revision as of 08:51, 6 March 2007

  • Mccamy-Fuchs analytical solution of the scattering of regular waves by a vertical circular cylinder.

This important flow accepts a closed-form analytical solution for arbitrary values of the wavelength [math]\displaystyle{ \lambda\, }[/math]. This was shown to be the case by Mccamy-Fuchs using separation of variables

[math]\displaystyle{ \Phi_I = \mathbf{Re} \left\{\phi_I e^{i\omega t} \right \} \, }[/math]
[math]\displaystyle{ \phi_I = \frac{i g A}{\omega} \frac{\cosh K(Z+H)}{\cosh K H} e^{-iKX} }[/math]

Let the diffraction potential be:

[math]\displaystyle{ \phi_7 = \frac{i g A}{\omega} \frac{\cosh K(Z+H)}{\cos K H} \psi(X,Y) }[/math]
  • For [math]\displaystyle{ \phi_7\, }[/math] to satisfy the 3D Laplace equation, it is easy to show that [math]\displaystyle{ \psi\, }[/math] must satisfy the Helmholtz equation:
[math]\displaystyle{ \left( \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial y^2} + K^2 \right) \psi = 0\, }[/math]

In polar coordinates:

[math]\displaystyle{ \begin{Bmatrix} x=R\cos\theta \\ y=R\sin\theta \end{Bmatrix} j \quad \psi(R,\theta) }[/math]

The Helmholtz equation takes the form:

[math]\displaystyle{ \left( \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} + \frac{1}{R^2} \frac{\partial^2}{\partial\theta^2} + K^2 \right) \psi = 0 \, }[/math]

On the cylinder:

[math]\displaystyle{ \frac{\partial\phi_7}{\partial n} = - \frac{\partial\phi_I}{\partial n} \, }[/math]

or

[math]\displaystyle{ \frac{\partial\psi}{\partial R} = - \frac{\partial}{\partial R} \left( e^{-iKX} \right) = -\frac{\partial}{\partial R} \left( e^{-iKE\cos R} \right) }[/math]

Here we make use of the familiar identity:

[math]\displaystyle{ e^{-iKR\cos\theta} = \sum_{m=0}^{infty} \epsilon_m J_m ( K R ) \cos m \theta }[/math]
[math]\displaystyle{ \epsilon_m = \begin{Bmatrix} 1, & m = 0 \\ 2(-i)^m, & m \gt 0 \end{Bmatrix} }[/math]

Try:

[math]\displaystyle{ \psi(R,\theta) = \sum_{m=0}^{infty} A_m F_m ( K R ) \cos m \theta \, }[/math]

Upon substitution in Helmholtz's equation we obtain:

[math]\displaystyle{ \left( \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} - \frac{m^2}{R^2} + K^2 \right) F_m ( K R ) = 0 }[/math]

This is the Bessel equation of order m accepting as solutions linear combinations of the Bessel functions

[math]\displaystyle{ \begin{Bmatrix} J_m ( K R ) \\ Y_m ( K R ) \end{Bmatrix} }[/math]

The proper linear combination in the present problem is suggested by the radiation condition that [math]\displaystyle{ \psi\, }[/math] must satisfy:

As [math]\displaystyle{ R \to \infty\, }[/math]:

[math]\displaystyle{ \psi(R,\theta) \sim e^{-iKR + i\omega t} \, }[/math]

Also as [math]\displaystyle{ R \to \infty\, }[/math]:

[math]\displaystyle{ J_m ( K R ) \sim \left( \frac{2}{\pi K R} \right)^{1/2} \cos \left( K R - \frac{1}{2} m \pi - \frac{\pi}{4} \right) }[/math]
[math]\displaystyle{ Y_m ( K R ) \sim \left( \frac{2}{\pi K R} \right)^{1/2} \sin \left( K R - \frac{1}{2} m \pi - \frac{\pi}{4} \right) }[/math]

Hence the Hankel function:

[math]\displaystyle{ H_m^{(2)} ( K R ) = J_m ( K R ) - i Y_m ( K R ) \, }[/math]
[math]\displaystyle{ \sim \left( \frac{2}{\pi K R} \right)^{1/2} e^{-i \left( K R - \frac{1}{2} m \pi - \frac{\pi}{4} \right)} }[/math]

Satisfies the far field condition required by [math]\displaystyle{ \psi(R,\theta) \, }[/math]. So we set:

[math]\displaystyle{ \psi(r,\theta) = \sum_{m=0}^{\infty} \epsilon_m A_m H_m^{(2)} ( K R ) \cos m \theta }[/math]

With the constants [math]\displaystyle{ A_m \, }[/math] to be determined. The cylinder condition requires:

[math]\displaystyle{ \left. \frac{\partial\psi}{\partial R} \right|_{R=a} = - \frac{\partial}{\partial R} \sum_{m=0}^{\infty} \epsilon_m J_m ( K R ) \left.\cos m \theta \right|_{r=a} }[/math]

It follows that:

[math]\displaystyle{ A_m {H_m^{(2)}}^' (K a) = - J_m^' (K a) \, }[/math]

or:

[math]\displaystyle{ A_m = - \frac{J_m^' ( K a ) }{{H_m^{(2)}}^' (K a)} \, }[/math]

where [math]\displaystyle{ (')\, }[/math] denotes derivatives with respect to the argument. The solution for the total velocity potential follows in the form

[math]\displaystyle{ (\psi+x)(r,\theta) = \sum_{m=0}^{\infty} \epsilon_m \left[ J_m (K R) - \frac{J_m^'(K a)}{{H_m^{(2)}}^'(K a)} H_m^{(2)} (K a) \right] \cos m \theta }[/math]

And the total original potential follows:

[math]\displaystyle{ \phi = \phi_I + \phi_7 = \frac{i g A}{\omega} \frac{\cosh K (Z+H)}{\cosh K H } (\psi+x) (r,\theta) }[/math]

In the limit as [math]\displaystyle{ H \to \infty \quad \frac{\cosh K (Z+H)}{K H} \longrightarrow e^{K Z} \, }[/math] and the series expansion solution survives.

Surge exciting force

The total complex potential, incident and scattered was derived above. The hydrodynamic pressure follows from Bernoulli:

[math]\displaystyle{ P = \mathfrak{Re} \left\{ \mathbf{P} e^{i\omega t} \right\} \, }[/math]
[math]\displaystyle{ \mathbf{P} = - i\omega \rho \left( \phi_I + \phi_7 \right) \, }[/math]

The Surge exciting force is given by

[math]\displaystyle{ X_1 = \iint_{S_B} P n_1 dS = \mathbf{Re} \left\{ \mathbf{X}_1 e^{i\omega t} \right\} }[/math]
[math]\displaystyle{ \mathbf{X}_1 = \rho \int_{-\infty}^0 dZ \int_0^{2\pi} a d\theta \left( - i \omega \frac{i g A}{\omega} \right) e^{K Z} n_1 (\psi + x)_{R=a} }[/math]

Simple algebra in this case of water of infinite depth leads to the expression.