Difference between revisions of "Conservation Laws and Boundary Conditions"

From WikiWaves
Jump to navigationJump to search
Line 8: Line 8:
 
<center><math>  
 
<center><math>  
 
\begin{matrix}
 
\begin{matrix}
&\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\
+
&(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\
 
&\vec X        &: &\mbox{Fixed Eulerian Vector} \\
 
&\vec X        &: &\mbox{Fixed Eulerian Vector} \\
 
&\vec V        &: &\mbox{Flow Velocity Vector at} \  \vec X \\
 
&\vec V        &: &\mbox{Flow Velocity Vector at} \  \vec X \\
 
&\zeta          &: &\mbox{Free Surface Elevation}
 
&\zeta          &: &\mbox{Free Surface Elevation}
 
\end{matrix} </math></center>
 
\end{matrix} </math></center>
 +
 +
At the moment we have not yet defined the region of space which is occupied by the fluid. However, the free surface plays a very important role in the propagation of ocean waves.
  
 
The most important assumption we make is that the fluid is an [http://en.wikipedia.org/wiki/Viscosity ideal fluid]. This means that there are no shear stresses due to viscosity and that the flow is [http://en.wikipedia.org/wiki/Irrotational irrotational]. This means that
 
The most important assumption we make is that the fluid is an [http://en.wikipedia.org/wiki/Viscosity ideal fluid]. This means that there are no shear stresses due to viscosity and that the flow is [http://en.wikipedia.org/wiki/Irrotational irrotational]. This means that
Line 18: Line 20:
 
<center><math>\nabla \times \vec V = 0</math></center>
 
<center><math>\nabla \times \vec V = 0</math></center>
  
We now introduce the very importand concept of the velocity potential. Essentially this allows us to express the solution as a function of a scalar rather than a vector through out the fluid domain. There is an important theorem in vector calculus that if <math>\nabla \times \vec V = 0</math> then we can express  
+
We now introduce the very important concept of the velocity potential. Essentially this allows us to express the solution as a function of a scalar rather than a vector through out the fluid domain. There is an important theorem in vector calculus that if <math>\nabla \times \vec V = 0</math> then we can express  
 
<center><math>
 
<center><math>
 
\vec V = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0
 
\vec V = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0

Revision as of 10:04, 26 April 2007

We begin by derving the equations of motion used to model ocean waves. The equations of motion of a general fluid are given by the celebrated Navier Stokes equations. However, for the large scale processes that occur in ocean waves many simplifications are possible.

Non Linear Free-surface Condition

We begin by defining the coordinate system.

[math]\displaystyle{ \begin{matrix} &(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]

At the moment we have not yet defined the region of space which is occupied by the fluid. However, the free surface plays a very important role in the propagation of ocean waves.

The most important assumption we make is that the fluid is an ideal fluid. This means that there are no shear stresses due to viscosity and that the flow is irrotational. This means that

[math]\displaystyle{ \nabla \times \vec V = 0 }[/math]

We now introduce the very important concept of the velocity potential. Essentially this allows us to express the solution as a function of a scalar rather than a vector through out the fluid domain. There is an important theorem in vector calculus that if [math]\displaystyle{ \nabla \times \vec V = 0 }[/math] then we can express

[math]\displaystyle{ \vec V = \nabla \Phi \Rightarrow \nabla \times \nabla \Phi \equiv 0 }[/math]

Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.

[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.

[math]\displaystyle{ \bullet }[/math] Conservation of mass:

[math]\displaystyle{ \nabla \cdot \vec V = 0 \Rightarrow }[/math]


[math]\displaystyle{ \nabla \cdot \nabla \Phi = 0 \Rightarrow \nabla^2 \Phi = 0 }[/math]

or

[math]\displaystyle{ \frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2\Phi}{\partial Y^2} + \frac{\partial^2\Phi}{\partial Z^2} = 0, \quad \mbox{Laplace Equation} }[/math]

[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.

[math]\displaystyle{ \frac{\partial \vec V}{\partial t} + (\vec V \cdot \nabla) \vec V = - \frac1{\rho} \nabla P + \vec g }[/math]


[math]\displaystyle{ P(\vec X, t) : \mbox{Fluid Pressure at} (\vec X, t) }[/math]


[math]\displaystyle{ \vec g = - \vec k g : \mbox{Acceleration of Gravity} }[/math]


[math]\displaystyle{ \vec k : \mbox{unit vector pointing in the positive z-direction} }[/math]


[math]\displaystyle{ \rho : \mbox{water density} \, }[/math]

[math]\displaystyle{ \bullet }[/math] Vector Identity:

[math]\displaystyle{ (\vec V \cdot \nabla) \vec V = \frac 1{2} \nabla (\vec V \cdot \vec V) - \vec V \times ( \nabla \times \vec V) }[/math]

in irrotational flow: [math]\displaystyle{ \nabla \times \vec V = 0 }[/math], thus Euler's equations become:

[math]\displaystyle{ \frac{\partial \vec V}{\partial t} + \frac 1{2} \nabla (\vec V \cdot \vec V) = - \frac 1{\rho} \nabla P - \nabla (g Z) }[/math]


[math]\displaystyle{ \mbox{Note} : \quad \nabla Z = \vec K, \vec V = \nabla \Phi }[/math]

Upon substitution:

[math]\displaystyle{ \nabla \underbrace{(\frac{\partial \Phi}{\partial t} + \frac 1{2} \nabla \Phi \cdot \nabla \Phi + \frac {P}{e} + g Z )} = 0 }[/math]


[math]\displaystyle{ F ( \vec X, t) }[/math]
[math]\displaystyle{ \nabla F( \vec X, t) =0 \quad \Longrightarrow \quad F (\vec X, t) = \mathbb{C} }[/math]

where [math]\displaystyle{ \mathbb{C} = \mbox{constant} }[/math]

Bernovlli's equation follows:

[math]\displaystyle{ \frac{\partial \Phi}{\partial t} + \frac 1{2} \nabla \Phi \cdot \nabla \Phi + \frac {P}{\rho} + g Z = \mathbb{C} }[/math]


or

[math]\displaystyle{ \frac{P}{\rho} = - \frac{\partial\Phi}{\partial t}-\frac{1}{2}\nabla\Phi \cdot \nabla \Phi - g Z + \mathbb{C} }[/math]

The value of the constant [math]\displaystyle{ \mathbb{C} }[/math] is immaterial as will be shown below.

[math]\displaystyle{ \bullet }[/math] Angular momentum conservation principle contained in:

[math]\displaystyle{ \nabla \times \vec V = 0 }[/math]

-- If particles are modelled as spheres, above equation implies no angular velocity at all times.

Derivation of Nonlinear Free-surface Condition

Method I

On [math]\displaystyle{ Z=\zeta; \ P=P_a \equiv \mbox{Atmospheric Pressure} }[/math]

From Bernoulli:

[math]\displaystyle{ \longrightarrow \frac{P_a}{\rho}=-\frac{\partial\Phi}{\partial t}-\frac{1}{2}\nabla\Phi\cdot\nabla\Phi-g\zeta+\mathbb{C} \qquad \mbox{on} \ Z=\zeta(X,Y,t) }[/math]

On [math]\displaystyle{ Z=\zeta }[/math] The mathematical function

[math]\displaystyle{ Z-\zeta(X,Y,t)\equiv\tilde{f}(X,Y,Z,t) }[/math]

is always zero when tracing a fluid particle on the free surface. So the substantial or total derivative of [math]\displaystyle{ \tilde{f} }[/math] must vanish, thus

[math]\displaystyle{ \frac{D\tilde{f}}{Dt}=0=\left ( \frac{\partial}{\partial t} + \vec V \cdot \nabla \right ) \tilde{f}=0, \qquad \mbox{on} \ Z=\zeta }[/math]

Expanding we obtain:

[math]\displaystyle{ \left (\frac{\partial}{\partial t} + \vec V \cdot \nabla \right ) (Z-\zeta) =0, \qquad \mbox{on} \ Z=\zeta }[/math]

[math]\displaystyle{ \longrightarrow \frac{\partial\zeta}{\partial t}+\frac{\partial\Phi}{\partial X} \frac{\partial\zeta}{\partial X}+\frac{\partial\Phi}{\partial Y}\frac{\partial\zeta}{\partial Y}=\frac{\partial\Phi}{\partial Z}, \ Z=\zeta \qquad \mbox{(Kinematic free-surface condition)} }[/math]

From Bernoulli's equation we obtain the dynamic free surface condition:

[math]\displaystyle{ \longrightarrow \frac{\partial\Phi}{\partial t} + \frac{1}{2} \nabla \Phi \cdot \nabla \Phi + g \zeta = \mathbb{C} - \frac{P_a}{\rho}, \ Z=\zeta \qquad \mbox{(Dynamic free-surface condition)} }[/math]

Constants in Bernoulli's equation may be set equal to zero when we are eventually interested in integrating pressures over closed or open boundaries (floating or submerged bodies) to obtain forces & moments. This follows from a simple application of one of the two gauss vector theorems we will use a lot in this course:

Guass I: [math]\displaystyle{ \vec n: \ \mbox{unit normal vector pointing inside the volume} \ \bar{V} }[/math]
[math]\displaystyle{ f(\bar{X}: \ \mbox{arbitrary sufficiently differentiable scalar function} }[/math]
[math]\displaystyle{ \mbox{vector identity} \ \iiint \nabla f dv = -\iint f \vec n ds }[/math]

Note the three scalar identities that follow:

[math]\displaystyle{ \iiint_{\bar{V}} \frac{\partial f}{\partial x} dv = - \iint_{s} f n_1 ds }[/math]


[math]\displaystyle{ \iiint_{bar{v}} \frac{\partial f}{\partial y} dv = - \iint_{s} f n_2 ds }[/math]


[math]\displaystyle{ \iiint_{bar{v}} \frac{\partial f}{\partial z} dv = - \iint_{s} f n_3 ds }[/math]

Guass II: [math]\displaystyle{ \vec V: \ \mbox{arbitrary sufficiently differentiable vector function} }[/math]

Scalar identity: [math]\displaystyle{ \iiint_{\bar{V}} \nabla \cdot \vec V = - \iint_{s} \vec V \cdot \vec n ds }[/math]

Scalar identity ofter used to prove mass conservation principle.


Definition of force & moment in terms of fluid pressure.

It follows from Gauss I that if [math]\displaystyle{ \rho = mathbb{C} }[/math] the force and moment over a closed boundary S vanish identically. Hence without loss of generality in the context of wave body interactions we will set [math]\displaystyle{ mathbb{C}=0 }[/math]. It follows that the dynamic free surface condition takes the form

[math]\displaystyle{ \zeta (x,y,t) = - \frac{1}{g} \left \{ \frac{\partial\Phi}{\partial t} + \frac{1}{2} \nabla\Phi \cdot \nabla\Phi \right \}, \qquad Z=\zeta }[/math]

Method II

When tracing a fluid particle on the free surface the hydrodynamic pressure given by Bernoulli (after the constant [math]\displaystyle{ \mathbb{C} }[/math] has been set equal to zero) must vanish as we follow the particle:

[math]\displaystyle{ \frac{D}{Dt} \left \{ \frac{\partial\Phi}{\partial t} + \frac{1}{2} \nabla\Phi \cdot \nabla\Phi+gZ \right \} =0, \qquad Z=\zeta }[/math]

or

[math]\displaystyle{ \left ( \frac{\partial}{\partial t} + \vec V \cdot \nabla \right ) \left ( \frac{\partial\Phi}{\partial t} + \frac{1}{2} + \frac{1}{2} \nabla\Phi \cdot \nabla\Phi +gZ \right ) =0, \qquad Z=\zeta }[/math]

This condition also follows upon elimination of [math]\displaystyle{ \zeta }[/math] from the kinematic & dynamic conditions derived under method I.

This completes the statement of the nonlinear boundary value problem satisfied by surface waves of large amplitude in potential flow and in the absence of wave breaking.


Ocean Wave Interaction with Ships and Offshore Energy Systems