Difference between revisions of "Floating Elastic Plates of Identical Properties"
Line 63: | Line 63: | ||
expanding gives | expanding gives | ||
<center><math> | <center><math> | ||
− | 0 = \int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=0} - \phi {\partial G \over \partial z}|_{z=0}\right)\, dx | + | 0 = -\int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=0} - \phi {\partial G \over \partial z}|_{z=0}\right)\, dx |
− | + | +\int_{-h}^0 \left( G {\partial \phi \over \partial x}|_{x=\infty} - \phi {\partial G \over \partial x}|_{x=\infty}\right)\, dz | |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | + | +\int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=-h} - \phi {\partial G \over \partial z}|_{z=-h}\right)\, dx | |
− | + | -\int_{-h}^0 \left( G {\partial \phi \over \partial x}|_{x=-\infty} - \phi {\partial G \over \partial x}|_{x=-\infty}\right)\, dz | |
</math></center> | </math></center> | ||
Our governing equations imply <math>G {\partial \phi \over \partial z}|_{z=-h} = 0 </math> and <math>\phi {\partial G \over \partial z}|_{z=-h} = 0</math> so that, | Our governing equations imply <math>G {\partial \phi \over \partial z}|_{z=-h} = 0 </math> and <math>\phi {\partial G \over \partial z}|_{z=-h} = 0</math> so that, | ||
<center><math> | <center><math> | ||
− | 0 = \int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=0} - \phi {\partial G \over \partial z}|_{z=0}\right)\, dx | + | 0 = -\int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=0} - \phi {\partial G \over \partial z}|_{z=0}\right)\, dx |
− | + | +\int_{-h}^0 \left( G {\partial \phi \over \partial x}|_{x=\infty} - \phi {\partial G \over \partial x}|_{x=\infty}\right)\, dz | |
− | + | -\int_{-h}^0 \left( G {\partial \phi \over \partial x}|_{x=-\infty} - \phi {\partial G \over \partial x}|_{x=-\infty}\right)\, dz | |
</math></center> | </math></center> | ||
+ | |||
+ | The vertical integrals at <math>x = \infty</math> and <math>x = -\infty</math> give the contribution <math>\phi_n^{In}</math> and we are left with | ||
+ | <center><math> | ||
+ | 0 = -\int_{-\infty}^\infty \left( G(x,x^\prime,z) \phi_z(x,z)|_{z=0} - \phi(x,z) G_z(x,x^\prime,z) |_{z=0}\right)\, dx | ||
+ | </math></center> | ||
+ | |||
+ | At z=0, the z variable disappears to give | ||
+ | <center><math> | ||
+ | 0 = -\int_{-\infty}^\infty \left( G(x,x^\prime) \phi_z(x) - \phi(x) G_z(x,x^\prime)\right)\, dx | ||
+ | </math></center> | ||
+ | |||
+ | We then substitute <math>G = \phi</math> to obtain | ||
+ | <center><math> | ||
+ | \int_{-\infty}^{\infty}\left( | ||
+ | G_{z}\left( x,x^{\prime }\right) \frac{1}{\alpha}\left( \beta \partial_{x^\prime}^4 -\gamma\alpha + 1\right)\phi_{z}( x) | ||
+ | -G\left( x,x^{\prime }\right) \phi_{z}(x) \right) dx = 0 | ||
+ | </math></center> | ||
+ | plus |
Revision as of 20:00, 23 May 2007
Introduction
We begin by presenting the solution for the case of a single crack with waves incident from normal. The solution method is derived from Squire and Dixon 2001 and Evans and Porter 2005.
We consider the entire free surface to be occupied by a Floating Elastic Plate with a single discontinuity at [math]\displaystyle{ x=x^\prime }[/math] (Fig. 1).
The governing equations are
The Free-Surface Green Function for a Floating Elastic Plate satisfies the following equations (plus the Sommerfeld Radiation Condition far from the body)
where
and [math]\displaystyle{ k_n }[/math] are the solutions of the Dispersion Relation for a Floating Elastic Plate,
with [math]\displaystyle{ n=-1,-2 }[/math] corresponding to the complex solutions with positive real part, [math]\displaystyle{ n=0 }[/math] corresponding to the imaginary solution with negative imaginary part and [math]\displaystyle{ n\gt 0 }[/math] corresponding to the real solutions with positive real part.
Green's Second Identity
Since φ and G are both twice continuously differentiable on U, where U represents the area bounded by the contour, S (Fig 1), the Green's second identity can be applied and gives
where n repressents the plane normal to the boundary, S.
Our governing equations for G and [math]\displaystyle{ \phi }[/math] imply that the L.H.S of Green's second identity is zero so that
expanding gives
Our governing equations imply [math]\displaystyle{ G {\partial \phi \over \partial z}|_{z=-h} = 0 }[/math] and [math]\displaystyle{ \phi {\partial G \over \partial z}|_{z=-h} = 0 }[/math] so that,
The vertical integrals at [math]\displaystyle{ x = \infty }[/math] and [math]\displaystyle{ x = -\infty }[/math] give the contribution [math]\displaystyle{ \phi_n^{In} }[/math] and we are left with
At z=0, the z variable disappears to give
We then substitute [math]\displaystyle{ G = \phi }[/math] to obtain
plus