Difference between revisions of "Wavemaker Theory"
Line 38: | Line 38: | ||
Note that unlike <math> \phi_\omega,\, \psi \, </math> does not representing a propagating wave down the tank so it is called a non-wavelike (evanescent) mode. Such modes do exist as will be shown below. On the wavemaker <math> (X=0) \, </math> the horizontal velocity due to <math> \phi_\omega\, </math> and that due to <math> \psi\,</math> must sum to the forcing velocity due to <math> \xi(t) \, </math>. | Note that unlike <math> \phi_\omega,\, \psi \, </math> does not representing a propagating wave down the tank so it is called a non-wavelike (evanescent) mode. Such modes do exist as will be shown below. On the wavemaker <math> (X=0) \, </math> the horizontal velocity due to <math> \phi_\omega\, </math> and that due to <math> \psi\,</math> must sum to the forcing velocity due to <math> \xi(t) \, </math>. | ||
− | When we solve Laplace's equation by separation of variables and apply the bottom boundary conditions we obtain solutions of the form <math> e^{-iKX} \cosh K(Z+H) </math> (which represent propagating waves and of the form <math> \cos \lambda (Z+H) \,</math>. Not that this solution satisfies the condition of vanishing value as <math> X \to \infty </math> provided that <math> \lambda > 0 \,</math>. | + | When we solve Laplace's equation by [http://en.wikipedia.org/wiki/Separation_of_Variables separation of variables] and apply the bottom boundary conditions we obtain solutions of the form <math> e^{-iKX} \cosh K(Z+H) </math> (which represent propagating waves and of the form <math> \cos \lambda (Z+H) \,</math>. Not that this solution satisfies the condition of vanishing value as <math> X \to \infty </math> provided that <math> \lambda > 0 \,</math>. |
− | + | These solutions satisfy Laplace's equation <math> \psi_{XX} + \psi_{ZZ} = 0, \, </math> for all <math> \lambda</math> and the seafloor condition </u>: <math> \psi_Z = 0, Z=-H.</math> | |
− | Laplace's equation | + | The free-surface condition implies that |
− | |||
− | |||
− | The | ||
<center><math> \psi_Z - \frac{\omega^2}{g} \psi = 0 \qquad \qquad \Longrightarrow \quad - \lambda \sin \lambda H - \frac{\omega^2}{g} \cos \lambda H = 0 </math></center> | <center><math> \psi_Z - \frac{\omega^2}{g} \psi = 0 \qquad \qquad \Longrightarrow \quad - \lambda \sin \lambda H - \frac{\omega^2}{g} \cos \lambda H = 0 </math></center> | ||
− | |||
<center><math> \Longrightarrow \quad \lambda \tan \lambda H = - \nu \equiv \frac{\omega^2}{g} </math></center> | <center><math> \Longrightarrow \quad \lambda \tan \lambda H = - \nu \equiv \frac{\omega^2}{g} </math></center> | ||
− | + | So for the non-wavelike modes <math> \psi, \lambda \,</math> must satisfy the [[Dispersion Relation for a Free Surface]], | |
− | |||
− | |||
− | So for the non-wavelike modes <math> \psi, \lambda \,</math> must satisfy the | ||
− | |||
<center><math> \lambda \tan \lambda H = - \nu = - \frac{\omega^2}{g} < 0 </math></center> | <center><math> \lambda \tan \lambda H = - \nu = - \frac{\omega^2}{g} < 0 </math></center> | ||
For positive values of <math> \lambda \, </math> so that <math> e^{-\lambda X} \to 0, X \to + \infty \, </math>. | For positive values of <math> \lambda \, </math> so that <math> e^{-\lambda X} \to 0, X \to + \infty \, </math>. | ||
− | |||
Values of <math>\lambda_i \, </math> satisfying the dispersion relation follow from the solution of the non-dimensional nolinear equation | Values of <math>\lambda_i \, </math> satisfying the dispersion relation follow from the solution of the non-dimensional nolinear equation | ||
− | |||
<center><math> \tan \omega = - \frac{\nu}{\omega}, \omega = \lambda H \, </math></center> | <center><math> \tan \omega = - \frac{\nu}{\omega}, \omega = \lambda H \, </math></center> | ||
− | |||
Solutions <math> \omega_i, i = 1, 2, \cdots \, </math> exist as shown above with <math> \omega_i \sim i \pi \, </math> for large <math> i \, </math>. These values are known as the eigenvalues or eigen-wavenumbers of the non-wavelike modes. The eigen-wavenumber of the wavelike solution <math> K\, </math> is given by the dispersion relation: | Solutions <math> \omega_i, i = 1, 2, \cdots \, </math> exist as shown above with <math> \omega_i \sim i \pi \, </math> for large <math> i \, </math>. These values are known as the eigenvalues or eigen-wavenumbers of the non-wavelike modes. The eigen-wavenumber of the wavelike solution <math> K\, </math> is given by the dispersion relation: | ||
− | |||
<center><math> \frac{\omega^2 H}{g} = KH \tan KH. \, </math></center> | <center><math> \frac{\omega^2 H}{g} = KH \tan KH. \, </math></center> | ||
+ | It can easily be shown that setting <math> K = i \lambda \, </math>, the dispersion relation of the non-wavelike nodes follows. In summary the purely imaginary roots of the surface wave dispersion relation and its single real positive root enter the solution of the wavemaker problem. | ||
− | + | Define the following orthogonal eigenmodes in teh vertical direction <math> Z \, </math>: | |
− | |||
− | |||
<center><math> f_0 (Z) = \frac{\sqrt{2} \cosh K ( Z + H )}{{ (H + \frac{1}{v} \sinh^2 KH )}^{1/2}} </math></center> | <center><math> f_0 (Z) = \frac{\sqrt{2} \cosh K ( Z + H )}{{ (H + \frac{1}{v} \sinh^2 KH )}^{1/2}} </math></center> |
Revision as of 19:59, 24 May 2007
Introduction
We will derive the potential in a two-dimensional wavetank due the motion of the wavemaker. The method is based on the Eigenfunction Matching Method. A paddle with draft [math]\displaystyle{ D\, }[/math] is undergoing small amplitude horizontal oscillations with displacement
where [math]\displaystyle{ \Pi\, }[/math] is assumed known and real. Because the oscillations are small the linear equations apply (which will be given formally below). This excitation creates plane progressive waves with amplitude [math]\displaystyle{ A \, }[/math] down the tank. The principal objective of wavemaker theory is to determine [math]\displaystyle{ A \, }[/math] as a function of [math]\displaystyle{ \omega, \Pi \, }[/math] and [math]\displaystyle{ H \, }[/math]. Time-dependent wavemaker theories can also be developed.
Expansion of the solution
In general, the wavemaker displacement at [math]\displaystyle{ X=0\, }[/math] may be written in the form
where [math]\displaystyle{ \Pi(Z) \, }[/math] is a known function of [math]\displaystyle{ Z \, }[/math]. The standard linear equations apply. Let the total velocity potential be
where
The first term is a velocity potential that represents a Linear Plane Progressive Regular Wave down the tank with amplitude [math]\displaystyle{ A \, }[/math], yet unknown. Thus
with [math]\displaystyle{ \omega^2 = gK \tanh KH. \, }[/math] (the Dispersion Relation for a Free Surface).
Evanescent modes and separation of variables
The second component potential [math]\displaystyle{ \psi\, }[/math] is by definition a decaying disturbance as [math]\displaystyle{ X \to \infty \, }[/math] and otherwise satisfies the following boundary value problem
The condition on the wavemaker [math]\displaystyle{ (X=0) \, }[/math] is yet to be enforced. Note that unlike [math]\displaystyle{ \phi_\omega,\, \psi \, }[/math] does not representing a propagating wave down the tank so it is called a non-wavelike (evanescent) mode. Such modes do exist as will be shown below. On the wavemaker [math]\displaystyle{ (X=0) \, }[/math] the horizontal velocity due to [math]\displaystyle{ \phi_\omega\, }[/math] and that due to [math]\displaystyle{ \psi\, }[/math] must sum to the forcing velocity due to [math]\displaystyle{ \xi(t) \, }[/math].
When we solve Laplace's equation by separation of variables and apply the bottom boundary conditions we obtain solutions of the form [math]\displaystyle{ e^{-iKX} \cosh K(Z+H) }[/math] (which represent propagating waves and of the form [math]\displaystyle{ \cos \lambda (Z+H) \, }[/math]. Not that this solution satisfies the condition of vanishing value as [math]\displaystyle{ X \to \infty }[/math] provided that [math]\displaystyle{ \lambda \gt 0 \, }[/math]. These solutions satisfy Laplace's equation [math]\displaystyle{ \psi_{XX} + \psi_{ZZ} = 0, \, }[/math] for all [math]\displaystyle{ \lambda }[/math] and the seafloor condition : [math]\displaystyle{ \psi_Z = 0, Z=-H. }[/math] The free-surface condition implies that
So for the non-wavelike modes [math]\displaystyle{ \psi, \lambda \, }[/math] must satisfy the Dispersion Relation for a Free Surface,
For positive values of [math]\displaystyle{ \lambda \, }[/math] so that [math]\displaystyle{ e^{-\lambda X} \to 0, X \to + \infty \, }[/math]. Values of [math]\displaystyle{ \lambda_i \, }[/math] satisfying the dispersion relation follow from the solution of the non-dimensional nolinear equation
Solutions [math]\displaystyle{ \omega_i, i = 1, 2, \cdots \, }[/math] exist as shown above with [math]\displaystyle{ \omega_i \sim i \pi \, }[/math] for large [math]\displaystyle{ i \, }[/math]. These values are known as the eigenvalues or eigen-wavenumbers of the non-wavelike modes. The eigen-wavenumber of the wavelike solution [math]\displaystyle{ K\, }[/math] is given by the dispersion relation:
It can easily be shown that setting [math]\displaystyle{ K = i \lambda \, }[/math], the dispersion relation of the non-wavelike nodes follows. In summary the purely imaginary roots of the surface wave dispersion relation and its single real positive root enter the solution of the wavemaker problem.
Define the following orthogonal eigenmodes in teh vertical direction [math]\displaystyle{ Z \, }[/math]:
Selected to satisfy:
So the wavemaker velocity potentials [math]\displaystyle{ \phi_w \, }[/math] and [math]\displaystyle{ \psi\, }[/math] can be expressed simply in terms of their respective eigen modes:
and:
On [math]\displaystyle{ X=0 \, }[/math]:
Or:
It follows that:
One of the primary objecives of wavemaker theory is to determine [math]\displaystyle{ a_0 \, }[/math] (or the far-field wave amplitude [math]\displaystyle{ A \, }[/math] ) in terms of [math]\displaystyle{ \Pi (Z) \, }[/math]. Multiplying both sides by [math]\displaystyle{ f_0 (Z) \, }[/math], integrating from [math]\displaystyle{ - H \to 0 \, }[/math] and using orthogonality we obtain:
The far-field wave component representing progagating waves is given by:
Plugging in [math]\displaystyle{ a_0\, }[/math] and solving for [math]\displaystyle{ A \, }[/math] we obtain the complex amplitude of the propagating wave at infinity, namely modulus and phase, in terms of the wave maker displacement [math]\displaystyle{ \Pi (Z) \, }[/math] and the other flow parameters.
Exercises
- Try [math]\displaystyle{ \Pi (Z) = A \begin{cases} 1, \qquad -D \lt Z \lt 0 \\ 0, -H \lt Z \lt -D \end{cases} }[/math] paddle-type wavemaker. determine the amplitude [math]\displaystyle{ A_W \, }[/math] and phase of the far-field wave-train.
- Repeat above exercise fro a hinge type wavemaker:
- For what type of [math]\displaystyle{ \Pi(Z) \, }[/math] are the non-wavelike modes [math]\displaystyle{ \psi \equiv 0 \, }[/math]? It is easy to verify by virtue of orthogonality that:
Unfortunately this is not a "practical" displacement since [math]\displaystyle{ f_0 (Z,K) \, }[/math] depends on [math]\displaystyle{ K\, }[/math], thus on [math]\displaystyle{ \omega\, }[/math]. So one would need to build a flexible paddle!
- What is the wave amplitude at infinity generated by a point source located at [math]\displaystyle{ Z = - D \, }[/math]?
More details on the above theory and extensions to the nonlinear case may be found in W&LAND MEI.
This article is based on the MIT open course notes and the original article can be found here
Ocean Wave Interaction with Ships and Offshore Energy Systems