Difference between revisions of "Superposition of Linear Plane Progressive Waves"
Line 91: | Line 91: | ||
For a single plane progressive wave: | For a single plane progressive wave: | ||
+ | |||
+ | {| border="3" align="center" | ||
+ | ! align="center" ! Energy per unit surface area of wave | ||
+ | |- align="center" | ||
+ | | <math> \bullet </math> Potential energy PE || <math> \bullet </math> Kinetic energy KE | ||
+ | |- | ||
+ | | | ||
+ | {| border="0" | ||
+ | | PE without wave <math> = \int_{-h} \rho g y dy = - - \rho g h \, </math> | ||
+ | |- | ||
+ | | PE with wave <math> \int_{-h}^\eta \rho g y dy = - \rho g ( \eta - h ) \, </math> | ||
+ | |- | ||
+ | | <math> PR_{wave} = - \rho g \eta = - \rho g A \cos ( kx - \omega t) \, </math> | ||
+ | |} | ||
+ | | | ||
+ | {| border="0" | ||
+ | | <math> KE_{wave} = \int_{-h}^\eta dy - \rho ( u + v ) </math> | ||
+ | |- | ||
+ | | Deep water <math> = \cdots = - \rho g A \ </math> to leading order | ||
+ | |- | ||
+ | | Finite depth <math> = \cdots \, </math> | ||
+ | |} | ||
+ | |- align="center" | ||
+ | ! Average energy over one period or one wavelength | ||
+ | |- align="center" | ||
+ | | <math> \overline{PE}_{wave} = - \rho g A \, </math> || <math> \overline{KE}_{wave} = - \rho g A \, </math> at any <math> h \, </math> | ||
+ | |} | ||
+ | |||
+ | * Total wave energy in deep water: | ||
+ | <math> E = PE + KE = - \rho g A \left[ \cos ( k x - \omega t ) + - \right] \, </math> | ||
+ | |||
+ | * Average wave energy <math> E \, </math> (over 1 period or 1 wavelength) for any water depth: | ||
+ | <math> \overline{E} = - \rho g A \left[ \overline{PE} + \overline{KE} \right] = - \rho g A = E_S , \, </math> <br> | ||
+ | <math> E_S \equiv \, </math> Specific Energy: total average wave energy per unit surface area. | ||
+ | |||
+ | * Linear waves: <math> \overline{PE} = \overline{KE} = \frac{1}{2} E_S \, </math> (equipartition). | ||
+ | |||
+ | * Nonlinear waves: <math> \overline{PE} > \overline{PE} \, </math>. | ||
+ | |||
+ | == Energy Propagation - Group Velocity == | ||
+ | |||
+ | Consider a fixed control volume <math> V \, </math> to the right of 'screen' <math> S \, </math>. Conservation of energy: | ||
+ | |||
+ | {| border="0" align="center" | ||
+ | |- align="center" | ||
+ | | <math> \underbrace{\frac{dW}{dt}} \, </math> || <math> = \, </math> || <math> \underbrace{\frac{dE}{dt}} \, </math> || <math> = \, </math> || <math> \underbrace{\Im} \, </math> | ||
+ | |- align="center" | ||
+ | | rate of work done on <math> S \, </math> || || rate of change of energy in <math> V \, </math> || || energy flux left to right | ||
+ | |} | ||
+ | |||
+ | where | ||
+ | |||
+ | <center><math> \Im = \int_{-h}^\eta pu dy \ \, </math> with <math> \ p = - \rho \left( \frac{d\phi}{dt} + gy \right) \ </math> and <math> \ u = \frac{\partial\phi}{\partial x} \, </math></center> | ||
+ | <center><math> \bar{\Im} = \underbrace{\left( -\rho g A \right)}_{\bar{E}} \underbrace{\underbrace{\frac{\omega}{k}}_{V_P} \underbrace{\left[-\left(1+\frac{kh}{kh}\right)\right]}_n}_{V_g} = \bar{E} | ||
+ | (n V_P) = \bar{E} V_g </math></center> | ||
+ | |||
+ | e.g. <math> A = 3m, \ T = 10\mbox{sec} \rightarrow \bar{\Im} = 400KW/m \, </math> | ||
+ | |||
+ | == Equation of Energy Conservation == | ||
+ | |||
+ | <center><math> \left( \bar{\Im} - \bar{\Im} \right) \Delta t = \Delta \bar{E} \Delta x \, </math></center> | ||
+ | <center><math> \bar{\Im} = \bar{\Im} + \left. \frac{\partial\bar{\Im}}{\partial{x}} \right| \Delta x + \cdots \, </math></center> | ||
+ | <center><math> \frac{\partial\bar{E}}{\partial{t}} + \frac{\partial\bar{\Im}}{\partial{x}} = 0 \, </math>, but <math> \bar{\Im} = V_g \bar{E} \, </math> | ||
+ | <center><math> \frac{\partial\bar{E}}{\partial{t}} + \frac{\partial}{\partial{x}} \left( V_g \bar{E} \right) = 0 \, </math></center> | ||
+ | |||
+ | 1. <math> \frac{\partial\bar{E}}{\partial{t}}=0, \ V_g \bar{E} = \ \, </math> constant in <math> x \, </math> for any <math> h(x) \, </math>. | ||
+ | |||
+ | 2. <math> V_g = \, </math> constant (i.e., constant depth, <math> \delta k \ll k )\, </math> | ||
+ | |||
+ | <center><math> \left( \frac{\partial}{\partial t} + V_g \frac{\partial}{\partial{x}} \right) \bar{E} = 0, \ </math> so <math> \ \bar{E} = \bar{E} (x-V_g t) \ </math> or <math> \ A = A ( x - V_g t ) | ||
+ | \, </math></center> | ||
+ | |||
+ | i.e., wave packet moves at <math> V_g \, </math>. | ||
+ | |||
+ | == Steady Ship Waves, Wave Resistance == | ||
+ | |||
+ | * ''Ship wave resistance drag'' <math> D_w \, </math> | ||
+ | |||
+ | <center> Rate of work done = rate of energy increase </center> | ||
+ | <center><math> D_w U + \bar{\Im} = \frac{d}{dt} (\bar{E}L) = \bar{E}U \, </math></center> | ||
+ | <center><math> D_w = \frac{1}{U} ( \bar{E} U - \bar{E} U /2 ) = - \bar{E} = - \rho g A \ \Rightarrow \ D_w \propto A </math></center> | ||
+ | |||
+ | * ''Amplitude of generated waves'' | ||
+ | The amplitude <math> A \, </math> depends on <math> U \, </math> and the ship geometry. Let <math> \ell \equiv \, </math> effective length. | ||
+ | |||
+ | To approximate the wave amplitude <math> A \, </math> superimpose a bow wave (<math> \eta_b \, </math>) and a stern wave (<math> \eta_s \, </math>). |
Revision as of 10:46, 15 July 2007
Superposition of Linear Plane Progressive Waves
Oblique Plane Waves
Consider wave propagation at an angle [math]\displaystyle{ \theta \, }[/math] to the x-axis
Standing Waves
Therefore, [math]\displaystyle{ \left. \frac{\partial\phi}{\partial{x}} \right|_x = 0 \, }[/math]. To obtain a standing wave, it is necessary to have perfect reflection at the wall at [math]\displaystyle{ x=0 \, }[/math].
Define the reflection coefficient as [math]\displaystyle{ R \equiv \frac{A_R}{A_I} (\leq 1) \, }[/math].
Oblique Standing Waves
Note: same [math]\displaystyle{ A, \ R = 1 \, }[/math].
and
Check:
Partial Reflection
[math]\displaystyle{ R \, }[/math]: Complex reflection coefficient
At node,
At antinode,
Wave Group
2 waves, same amplitude [math]\displaystyle{ A \, }[/math] and direction, but [math]\displaystyle{ \omega \, }[/math] and [math]\displaystyle{ k \, }[/math] very close to each other.
In the limit,
and since
[math]\displaystyle{ \begin{Bmatrix} & (a) \ \mbox{deep water} \ kh \gg 1 & n = \frac{V_g}{V_P} = -1 \\ & (b) \ \mbox{shallow water} \ kh \ll 1 & n=\frac{V_g}{V_P}=1 \ \mbox{no dispersion} \\ & (c) \ \mbox{intermediate depth} & -1 \lt n \lt 1 \end{Bmatrix} V_g \leq V_P }[/math]
Wave Energy -Energy Associated with Wave Motion.
For a single plane progressive wave:
align="center" ! Energy per unit surface area of wave | |||||||
---|---|---|---|---|---|---|---|
[math]\displaystyle{ \bullet }[/math] Potential energy PE | [math]\displaystyle{ \bullet }[/math] Kinetic energy KE | ||||||
|
| ||||||
Average energy over one period or one wavelength | |||||||
[math]\displaystyle{ \overline{PE}_{wave} = - \rho g A \, }[/math] | [math]\displaystyle{ \overline{KE}_{wave} = - \rho g A \, }[/math] at any [math]\displaystyle{ h \, }[/math] |
- Total wave energy in deep water:
[math]\displaystyle{ E = PE + KE = - \rho g A \left[ \cos ( k x - \omega t ) + - \right] \, }[/math]
- Average wave energy [math]\displaystyle{ E \, }[/math] (over 1 period or 1 wavelength) for any water depth:
[math]\displaystyle{ \overline{E} = - \rho g A \left[ \overline{PE} + \overline{KE} \right] = - \rho g A = E_S , \, }[/math]
[math]\displaystyle{ E_S \equiv \, }[/math] Specific Energy: total average wave energy per unit surface area.
- Linear waves: [math]\displaystyle{ \overline{PE} = \overline{KE} = \frac{1}{2} E_S \, }[/math] (equipartition).
- Nonlinear waves: [math]\displaystyle{ \overline{PE} \gt \overline{PE} \, }[/math].
Energy Propagation - Group Velocity
Consider a fixed control volume [math]\displaystyle{ V \, }[/math] to the right of 'screen' [math]\displaystyle{ S \, }[/math]. Conservation of energy:
[math]\displaystyle{ \underbrace{\frac{dW}{dt}} \, }[/math] | [math]\displaystyle{ = \, }[/math] | [math]\displaystyle{ \underbrace{\frac{dE}{dt}} \, }[/math] | [math]\displaystyle{ = \, }[/math] | [math]\displaystyle{ \underbrace{\Im} \, }[/math] |
rate of work done on [math]\displaystyle{ S \, }[/math] | rate of change of energy in [math]\displaystyle{ V \, }[/math] | energy flux left to right |
where
e.g. [math]\displaystyle{ A = 3m, \ T = 10\mbox{sec} \rightarrow \bar{\Im} = 400KW/m \, }[/math]
Equation of Energy Conservation
1. [math]\displaystyle{ \frac{\partial\bar{E}}{\partial{t}}=0, \ V_g \bar{E} = \ \, }[/math] constant in [math]\displaystyle{ x \, }[/math] for any [math]\displaystyle{ h(x) \, }[/math].
2. [math]\displaystyle{ V_g = \, }[/math] constant (i.e., constant depth, [math]\displaystyle{ \delta k \ll k )\, }[/math]
i.e., wave packet moves at [math]\displaystyle{ V_g \, }[/math].
Steady Ship Waves, Wave Resistance
- Ship wave resistance drag [math]\displaystyle{ D_w \, }[/math]
- Amplitude of generated waves
The amplitude [math]\displaystyle{ A \, }[/math] depends on [math]\displaystyle{ U \, }[/math] and the ship geometry. Let [math]\displaystyle{ \ell \equiv \, }[/math] effective length.
To approximate the wave amplitude [math]\displaystyle{ A \, }[/math] superimpose a bow wave ([math]\displaystyle{ \eta_b \, }[/math]) and a stern wave ([math]\displaystyle{ \eta_s \, }[/math]).