Difference between revisions of "Wave Forces on a Body"
From WikiWaves
Jump to navigationJump to searchLine 24: | Line 24: | ||
| || steepness || parameter | | || steepness || parameter | ||
|} | |} | ||
+ | |||
+ | === Type of Forces === | ||
+ | |||
+ | 1. '''Viscous forces''' Form drag, viscous drag <math> = f ( R_e, K_c, \, </math> roughness, <math> \ldots ) </math>. | ||
+ | |||
+ | * ''Form drag'' <math> ( C_D ) \, </math> | ||
+ | |||
+ | Associated primarily with flow separation -normal stresses. | ||
+ | |||
+ | * ''Friction drag'' <math> ( C_F ) \, </math> | ||
+ | |||
+ | Associated with skin friction <math> \tau_w, \ i.e., \ \vec{F} \sim \iint_{\mbox{body (wetted surface)}} \tau_w dS \, </math>. | ||
+ | |||
+ | 2. '''Inertial forces''' Froude-Krylov forces, diffraction forces, radiation forces. | ||
+ | |||
+ | Forces arising from potential flow wave theory, | ||
+ | |||
+ | <center><math> \vec{F} = \iint_{body (wetted surface)} p \hat{n} dS, \ \, </math> where <math> \ p = - \rho \left( \frac{\partial\phi}{\partial t} + g y + \frac{1}{2} \left| \nabla \phi \right|^2 \right) </math></center> | ||
+ | |||
+ | For linear theory, the velocity potential <math> \phi \, </math> and the pressure <math> p \, </math> can be decomposed to | ||
+ | |||
+ | {| border="0" align="center" | ||
+ | |- align="center" | ||
+ | | <math> \phi = \, </math> || <math> \underbrace{\phi_I} \, </math> || <math> + \, </math> || <math> \underbrace{\phi_D} \, </math> || <math> + \, </math> || <math> \underbrace{\phi_R} \, </math> | ||
+ | |- align="center" | ||
+ | | || Incident wave || || Diffracted wave || || Radiated wave | ||
+ | |- align="center" | ||
+ | | || potential <math> (a) \, </math> || || potential <math> (b.1) \, </math> || || potential <math> (b.2) \, </math> | ||
+ | |- align="center" | ||
+ | | <math> - \frac{p}{\rho} = \, </math> || <math> \frac{\partial\phi_I}{\partial t} \, </math> || <math> + \, </math> || <math> \frac{\partial\phi_D}{\partial t} \, </math> || <math> + \, </math> || <math> \frac{\partial\phi_R}{\partial t} \, </math> || <math> + \, | ||
+ | </math> || <math> g y \, </math> | ||
+ | |} | ||
+ | |||
+ | (a) Incident wave potential |
Revision as of 12:24, 17 July 2007
Wave Forces on a Body
[math]\displaystyle{ D_F = \frac{F}{\rho g A \ell^2} = f \left( \frac{}{} \right. }[/math] | [math]\displaystyle{ \underbrace{\frac{A}{\lambda}} \, }[/math], | [math]\displaystyle{ \underbrace{\frac{\ell}{\lambda}} \, }[/math], | [math]\displaystyle{ R_e \, }[/math], | [math]\displaystyle{ \frac{h}{\lambda} \, }[/math], | roughness, | [math]\displaystyle{ \ldots \left. \frac{}{} \right) \, }[/math] |
Wave | Diffraction | |||||
steepness | parameter |
Type of Forces
1. Viscous forces Form drag, viscous drag [math]\displaystyle{ = f ( R_e, K_c, \, }[/math] roughness, [math]\displaystyle{ \ldots ) }[/math].
- Form drag [math]\displaystyle{ ( C_D ) \, }[/math]
Associated primarily with flow separation -normal stresses.
- Friction drag [math]\displaystyle{ ( C_F ) \, }[/math]
Associated with skin friction [math]\displaystyle{ \tau_w, \ i.e., \ \vec{F} \sim \iint_{\mbox{body (wetted surface)}} \tau_w dS \, }[/math].
2. Inertial forces Froude-Krylov forces, diffraction forces, radiation forces.
Forces arising from potential flow wave theory,
For linear theory, the velocity potential [math]\displaystyle{ \phi \, }[/math] and the pressure [math]\displaystyle{ p \, }[/math] can be decomposed to
[math]\displaystyle{ \phi = \, }[/math] | [math]\displaystyle{ \underbrace{\phi_I} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \underbrace{\phi_D} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \underbrace{\phi_R} \, }[/math] | ||
Incident wave | Diffracted wave | Radiated wave | |||||
potential [math]\displaystyle{ (a) \, }[/math] | potential [math]\displaystyle{ (b.1) \, }[/math] | potential [math]\displaystyle{ (b.2) \, }[/math] | |||||
[math]\displaystyle{ - \frac{p}{\rho} = \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_I}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_D}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_R}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ g y \, }[/math] |
(a) Incident wave potential