Difference between revisions of "Wave Forces on a Body"

From WikiWaves
Jump to navigationJump to search
Line 62: Line 62:
  
 
{| border="0"
 
{| border="0"
 +
|- align="center"
 
| <math> \left. \begin{matrix} & \phi \approx \phi_I \\ & p \approx - \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right) \end{matrix} \right\} </math>
 
| <math> \left. \begin{matrix} & \phi \approx \phi_I \\ & p \approx - \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right) \end{matrix} \right\} </math>
 
| <math> \Rightarrow \vec{F}_{FK} = \, </math>
 
| <math> \Rightarrow \vec{F}_{FK} = \, </math>
| width= "100" | <math> \iint \, </math>
+
| <math> \iint \,</math>
 
| <math> \underbrace{- \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right)} </math>
 
| <math> \underbrace{- \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right)} </math>
 
| <math> \hat{n} dS \leftarrow \, </math>
 
| <math> \hat{n} dS \leftarrow \, </math>
| width="100" | can calculate knowing (incident) wave kinematics (and body geometry)
+
| width="225" | can calculate knowing (incident) <br> wave kinematics (and body geometry)
|-
+
|- align="center"
 
|  ||
 
|  ||
| width="50" | body surface
+
| width="25" | body surface
 
| <math> \equiv p_I \, </math>
 
| <math> \equiv p_I \, </math>
 
|}
 
|}

Revision as of 13:14, 17 July 2007

Wave Forces on a Body

[math]\displaystyle{ U = \omega A \, }[/math]


[math]\displaystyle{ R_e = \frac{U\ell}{\nu} = \frac{\omega A \ell}{\nu} \, }[/math]


[math]\displaystyle{ K_C = \frac{UT}{\ell} = \frac{A\omega T}{\ell} = 2 \pi \frac{A}{\ell} \, }[/math]


[math]\displaystyle{ D_F = \frac{F}{\rho g A \ell^2} = f \left( \frac{}{} \right. }[/math] [math]\displaystyle{ \underbrace{\frac{A}{\lambda}} \, }[/math], [math]\displaystyle{ \underbrace{\frac{\ell}{\lambda}} \, }[/math], [math]\displaystyle{ R_e \, }[/math], [math]\displaystyle{ \frac{h}{\lambda} \, }[/math], roughness, [math]\displaystyle{ \ldots \left. \frac{}{} \right) \, }[/math]
Wave Diffraction
steepness parameter

Type of Forces

1. Viscous forces Form drag, viscous drag [math]\displaystyle{ = f ( R_e, K_c, \, }[/math] roughness, [math]\displaystyle{ \ldots ) }[/math].

  • Form drag [math]\displaystyle{ ( C_D ) \, }[/math]

Associated primarily with flow separation -normal stresses.

  • Friction drag [math]\displaystyle{ ( C_F ) \, }[/math]

Associated with skin friction [math]\displaystyle{ \tau_w, \ i.e., \ \vec{F} \sim \iint_{\mbox{body (wetted surface)}} \tau_w dS \, }[/math].

2. Inertial forces Froude-Krylov forces, diffraction forces, radiation forces.

Forces arising from potential flow wave theory,

[math]\displaystyle{ \vec{F} = \iint_{body (wetted surface)} p \hat{n} dS, \ \, }[/math] where [math]\displaystyle{ \ p = - \rho \left( \frac{\partial\phi}{\partial t} + g y + \frac{1}{2} \left| \nabla \phi \right|^2 \right) }[/math]

For linear theory, the velocity potential [math]\displaystyle{ \phi \, }[/math] and the pressure [math]\displaystyle{ p \, }[/math] can be decomposed to

[math]\displaystyle{ \phi = \, }[/math] [math]\displaystyle{ \underbrace{\phi_I} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \underbrace{\phi_D} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \underbrace{\phi_R} \, }[/math]
Incident wave Diffracted wave Radiated wave
potential [math]\displaystyle{ (a) \, }[/math] potential [math]\displaystyle{ (b.1) \, }[/math] potential [math]\displaystyle{ (b.2) \, }[/math]
[math]\displaystyle{ - \frac{p}{\rho} = \, }[/math] [math]\displaystyle{ \frac{\partial\phi_I}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \frac{\partial\phi_D}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ \frac{\partial\phi_R}{\partial t} \, }[/math] [math]\displaystyle{ + \, }[/math] [math]\displaystyle{ g y \, }[/math]

(a) Incident wave potential

  • Froude-Krylov Force approximation When [math]\displaystyle{ \ell \ll \lambda \, }[/math], the incident wave field is not significantly modified by the presence of the body, therefore ignore [math]\displaystyle{ \phi_D \, }[/math] and [math]\displaystyle{ \phi_R \, }[/math]. Froude-Krylov approximation:
[math]\displaystyle{ \left. \begin{matrix} & \phi \approx \phi_I \\ & p \approx - \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right) \end{matrix} \right\} }[/math] [math]\displaystyle{ \Rightarrow \vec{F}_{FK} = \, }[/math] [math]\displaystyle{ \iint \, }[/math] [math]\displaystyle{ \underbrace{- \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right)} }[/math] [math]\displaystyle{ \hat{n} dS \leftarrow \, }[/math] can calculate knowing (incident)
wave kinematics (and body geometry)
body surface [math]\displaystyle{ \equiv p_I \, }[/math]