Difference between revisions of "Graf's Addition Theorem"
m |
|||
Line 10: | Line 10: | ||
</math></center> | </math></center> | ||
where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | ||
− | <math>J_\nu</math>, <math>I_\nu</math>, <math>Y_\nu</math>, <math>K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>, | + | <math>\,\!J_\nu</math>, <math>\,\!I_\nu</math>, <math>\,\!Y_\nu</math>, <math>\,\!K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>, |
<math>(r_j,\theta_j)</math> and <math>(r_l,\theta_l)</math> are polar coordinates centred at two different positions | <math>(r_j,\theta_j)</math> and <math>(r_l,\theta_l)</math> are polar coordinates centred at two different positions | ||
with global coordinates <math>\boldsymbol{O}_j </math>, <math> \boldsymbol{O}_l </math>, and | with global coordinates <math>\boldsymbol{O}_j </math>, <math> \boldsymbol{O}_l </math>, and |
Revision as of 05:26, 24 December 2008
Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found Abramowitz and Stegun 1964 online. We express the theorem in the following form
where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ \,\!J_\nu }[/math], [math]\displaystyle{ \,\!I_\nu }[/math], [math]\displaystyle{ \,\!Y_\nu }[/math], [math]\displaystyle{ \,\!K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math], [math]\displaystyle{ (r_j,\theta_j) }[/math] and [math]\displaystyle{ (r_l,\theta_l) }[/math] are polar coordinates centred at two different positions with global coordinates [math]\displaystyle{ \boldsymbol{O}_j }[/math], [math]\displaystyle{ \boldsymbol{O}_l }[/math], and [math]\displaystyle{ (R_{jl},\vartheta_{jl}) }[/math] are the polar coordinates of [math]\displaystyle{ \boldsymbol{O}_l }[/math] with respect to [math]\displaystyle{ \boldsymbol{O}_j }[/math]. This expression is valid only provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math] ( although this restriction is unnecessary if [math]\displaystyle{ C=J }[/math] and [math]\displaystyle{ \nu }[/math] is an integer).
Explicit versions of the theorem are given below,
This theorem form the basis for Kagemoto and Yue Interaction Theory.