Difference between revisions of "Eigenfunction Matching for a Submerged Circular Dock"
Line 35: | Line 35: | ||
as <math>r\rightarrow\infty</math>. The subscript <math>z</math> | as <math>r\rightarrow\infty</math>. The subscript <math>z</math> | ||
denotes the derivative in <math>z</math>-direction. | denotes the derivative in <math>z</math>-direction. | ||
+ | |||
+ | = Separation of Variables = | ||
+ | |||
+ | We can separate variables and we obtain the following expression for the velocity potential | ||
+ | |||
+ | Therefore the potential can | ||
+ | be expanded as | ||
+ | <center> | ||
+ | <math> | ||
+ | \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n} | ||
+ | (k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r>a | ||
+ | </math> | ||
+ | </center> | ||
+ | and | ||
+ | <center> | ||
+ | <math> | ||
+ | \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}b_{0n}(r/a)^{|n|} e^{i n\theta}\psi_{0}(z)+ | ||
+ | \sum_{n=-\infty}^{\infty}\sum_{m=1}^{\infty}b_{mn} | ||
+ | I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a | ||
+ | </math> | ||
+ | </center> | ||
+ | where <math>a_{mn}</math> and <math>b_{mn}</math> | ||
+ | are the coefficients of the potential in the open water and | ||
+ | the plate covered region respectively. |
Revision as of 03:25, 25 July 2008
Introduction
We present here very briefly the theory for a submerged circular dock. The details of the method can be found in Eigenfunction Matching for a Submerged Semi-Infinite Dock and Eigenfunction Matching for a Submerged Finite Dock
Governing Equations
We begin with the Frequency Domain Problem. We will use a cylindrical coordinate system, [math]\displaystyle{ (r,\theta,z) }[/math], assumed to have its origin at the centre of the circular plate which has radius [math]\displaystyle{ a }[/math]. The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as
[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]
[math]\displaystyle{ \phi_{z}=0, \,\, z=-d,\,r\lt a }[/math]
We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ r\rightarrow\infty }[/math]. The subscript [math]\displaystyle{ z }[/math] denotes the derivative in [math]\displaystyle{ z }[/math]-direction.
Separation of Variables
We can separate variables and we obtain the following expression for the velocity potential
Therefore the potential can be expanded as
[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n} (k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r\gt a }[/math]
and
[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}b_{0n}(r/a)^{|n|} e^{i n\theta}\psi_{0}(z)+ \sum_{n=-\infty}^{\infty}\sum_{m=1}^{\infty}b_{mn} I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r\lt a }[/math]
where [math]\displaystyle{ a_{mn} }[/math] and [math]\displaystyle{ b_{mn} }[/math] are the coefficients of the potential in the open water and the plate covered region respectively.