Difference between revisions of "Eigenfunction Matching for a Submerged Circular Dock"

From WikiWaves
Jump to navigationJump to search
Line 45: Line 45:
 
<math>
 
<math>
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n}
 
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n}
(k_{m}r)e^{i n\theta}\phi_{m}(z), \;\;r>a
+
(k_{m}^{h}r)e^{i n\theta}\phi^{h}_{m}(z), \;\;r>a
 
</math>
 
</math>
 
</center>
 
</center>
Line 51: Line 51:
 
<center>
 
<center>
 
<math>
 
<math>
\phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}b_{0n}(r/a)^{|n|} e^{i n\theta}\psi_{0}(z)+
+
\phi(r,\theta,z)=
\sum_{n=-\infty}^{\infty}\sum_{m=1}^{\infty}b_{mn}
+
\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}b_{mn}
I_{n}(\kappa_{m}r)e^{i n\theta}\psi_{m}(z), \;\;r<a
+
I_{n}(k_{m}^{prime}r)e^{i n\theta}\chi_{m}(z), \;\;r<a
 
</math>
 
</math>
 
</center>
 
</center>
where <math>a_{mn}</math> and <math>b_{mn}</math>
+
where the definition of <math>k_{m}^{h}</math>, <math>k_{m}^{prime}, <math>phi^{h}_{m}</math> and <\chi_{m}(z)/math>
are the coefficients of the potential in the open water and
+
can be found in
the plate covered region respectively.
 

Revision as of 03:30, 25 July 2008

Introduction

We present here very briefly the theory for a submerged circular dock. The details of the method can be found in Eigenfunction Matching for a Submerged Semi-Infinite Dock and Eigenfunction Matching for a Submerged Finite Dock

Governing Equations

We begin with the Frequency Domain Problem. We will use a cylindrical coordinate system, [math]\displaystyle{ (r,\theta,z) }[/math], assumed to have its origin at the centre of the circular plate which has radius [math]\displaystyle{ a }[/math]. The water is assumed to have constant finite depth [math]\displaystyle{ h }[/math] and the [math]\displaystyle{ z }[/math]-direction points vertically upward with the water surface at [math]\displaystyle{ z=0 }[/math] and the sea floor at [math]\displaystyle{ z=-h }[/math]. The boundary value problem can therefore be expressed as

[math]\displaystyle{ \Delta\phi=0, \,\, -h\lt z\lt 0, }[/math]

[math]\displaystyle{ \phi_{z}=0, \,\, z=-h, }[/math]

[math]\displaystyle{ \phi_{z}=\alpha\phi, \,\, z=0, }[/math]

[math]\displaystyle{ \phi_{z}=0, \,\, z=-d,\,r\lt a }[/math]

We must also apply the Sommerfeld Radiation Condition as [math]\displaystyle{ r\rightarrow\infty }[/math]. The subscript [math]\displaystyle{ z }[/math] denotes the derivative in [math]\displaystyle{ z }[/math]-direction.

Separation of Variables

We can separate variables and we obtain the following expression for the velocity potential

Therefore the potential can be expanded as

[math]\displaystyle{ \phi(r,\theta,z)=\sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}a_{mn}K_{n} (k_{m}^{h}r)e^{i n\theta}\phi^{h}_{m}(z), \;\;r\gt a }[/math]

and

[math]\displaystyle{ \phi(r,\theta,z)= \sum_{n=-\infty}^{\infty}\sum_{m=0}^{\infty}b_{mn} I_{n}(k_{m}^{prime}r)e^{i n\theta}\chi_{m}(z), \;\;r\lt a }[/math]

where the definition of [math]\displaystyle{ k_{m}^{h} }[/math], [math]\displaystyle{ k_{m}^{prime}, \lt math\gt phi^{h}_{m} }[/math] and <\chi_{m}(z)/math> can be found in