Difference between revisions of "Template:Separation of variables for a free surface"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
 
== Separation of variables for a free surface ==  
 
== Separation of variables for a free surface ==  
  
We now separate variables and write the potential as
+
The equation
 
<center>
 
<center>
 
<math>
 
<math>
\phi(x,z)=\zeta(z)\rho(x)
+
- \frac{1}{Z(z)}
 +
\frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2.
 
</math>
 
</math>
 
</center>
 
</center>
Applying Laplace's equation we obtain
+
subject to the boundary conditions
 
<center>
 
<center>
 
<math>
 
<math>
\zeta_{zz}+k^{2}\zeta=0.
+
\frac{dZ}{dz}(-h) = 0
 +
</math>
 +
</center>
 +
and
 +
<center>
 +
<math>
 +
\frac{dZ}{dz}(0) = \alpha Z(0)
 
</math>
 
</math>
 
</center>
 
</center>
Line 16: Line 23:
 
<center>
 
<center>
 
<math>
 
<math>
\zeta=\cos k(z+h)
+
Z = \frac{\cos k(z+h)}{\cos kh}
 
</math>
 
</math>
 
</center>
 
</center>
Line 48: Line 55:
 
</math>
 
</math>
 
</center>.
 
</center>.
 +
 +
The equation
 +
<center>
 +
<math>
 +
- \frac{1}{Z(z)}
 +
\frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2.
 +
</math>
 +
</center>
 +
is the equation for separation of variables for a free surface.
 +
In the setting of water of finite depth, the general solution 
 +
<math>Z(z)</math> can be written as
 +
<center>
 +
<math>
 +
Z(z) = F \cos \big( \eta (z+d) \big) + G \sin \big( \eta (z+d) \big),
 +
\quad \eta \in \mathbb{C} \backslash \{ 0 \},
 +
</math>
 +
</center>
 +
since <math>\eta = 0</math> is not an eigenvalue.
 +
To satisfy the bed condition, <math>G</math> must be <math>0</math>.
 +
<math>Z(z)</math> satisfies the free surface condition, provided the separation
 +
constants <math>\eta</math> are roots of the equation
 +
<center>
 +
<math>
 +
- F \eta \sin \big( \eta (z+d) \big) - \alpha F \cos \big( \eta (z+d)
 +
  \big) = 0, \quad z=0,
 +
</math>
 +
</center>
 +
or, equivalently, if they satisfy the [[Dispersion Relation for a Free Surface]]
 +
<center><math>
 +
\alpha + \eta \tan \eta d = 0\,.
 +
</math></center>
 +
This equation has an
 +
infinite number of real roots, denoted by <math>k_m</math> and <math>-k_m</math> (<math>m \geq
 +
1</math>), but the negative roots produce the same eigenfunctions as the
 +
positive ones and will therefore not be considered. It also has a pair of purely imaginary roots which
 +
will be denoted by <math>k_0</math>. Writing <math>k_0 = - \mathrm{i} k</math>, <math>k</math> is the
 +
(positive) root of the [[Dispersion Relation for a Free Surface]]
 +
<center><math>
 +
\alpha = k \tanh k d,\,
 +
</math></center>
 +
again it suffices to consider only the positive root of this equation. The solutions can
 +
therefore be written as
 +
<center>
 +
<math>
 +
Z_m(z) = F_m \cos \big( k_m (z+d) \big), \quad m \geq 0.
 +
</math>
 +
</center>
 +
It follows that <math>k</math> is the previously introduced wavenumber and the [[Dispersion Relation for a Free Surface]]
 +
gives the required relation between the radian frequency and the wavenumber.

Revision as of 08:31, 25 August 2008

Separation of variables for a free surface

The equation

[math]\displaystyle{ - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2. }[/math]

subject to the boundary conditions

[math]\displaystyle{ \frac{dZ}{dz}(-h) = 0 }[/math]

and

[math]\displaystyle{ \frac{dZ}{dz}(0) = \alpha Z(0) }[/math]

We then use the boundary condition at [math]\displaystyle{ z=-h }[/math] to write

[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]

The boundary condition at the free surface ([math]\displaystyle{ z=0 }[/math]) is

[math]\displaystyle{ k\tan\left( kh\right) =-\alpha, }[/math]

which is the Dispersion Relation for a Free Surface We denote the positive imaginary solution of this equation by [math]\displaystyle{ k_{0} }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math]. We define

[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that

[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{n}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{m}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right) }[/math]

.

The equation

[math]\displaystyle{ - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2. }[/math]

is the equation for separation of variables for a free surface. In the setting of water of finite depth, the general solution [math]\displaystyle{ Z(z) }[/math] can be written as

[math]\displaystyle{ Z(z) = F \cos \big( \eta (z+d) \big) + G \sin \big( \eta (z+d) \big), \quad \eta \in \mathbb{C} \backslash \{ 0 \}, }[/math]

since [math]\displaystyle{ \eta = 0 }[/math] is not an eigenvalue. To satisfy the bed condition, [math]\displaystyle{ G }[/math] must be [math]\displaystyle{ 0 }[/math]. [math]\displaystyle{ Z(z) }[/math] satisfies the free surface condition, provided the separation constants [math]\displaystyle{ \eta }[/math] are roots of the equation

[math]\displaystyle{ - F \eta \sin \big( \eta (z+d) \big) - \alpha F \cos \big( \eta (z+d) \big) = 0, \quad z=0, }[/math]

or, equivalently, if they satisfy the Dispersion Relation for a Free Surface

[math]\displaystyle{ \alpha + \eta \tan \eta d = 0\,. }[/math]

This equation has an infinite number of real roots, denoted by [math]\displaystyle{ k_m }[/math] and [math]\displaystyle{ -k_m }[/math] ([math]\displaystyle{ m \geq 1 }[/math]), but the negative roots produce the same eigenfunctions as the positive ones and will therefore not be considered. It also has a pair of purely imaginary roots which will be denoted by [math]\displaystyle{ k_0 }[/math]. Writing [math]\displaystyle{ k_0 = - \mathrm{i} k }[/math], [math]\displaystyle{ k }[/math] is the (positive) root of the Dispersion Relation for a Free Surface

[math]\displaystyle{ \alpha = k \tanh k d,\, }[/math]

again it suffices to consider only the positive root of this equation. The solutions can therefore be written as

[math]\displaystyle{ Z_m(z) = F_m \cos \big( k_m (z+d) \big), \quad m \geq 0. }[/math]

It follows that [math]\displaystyle{ k }[/math] is the previously introduced wavenumber and the Dispersion Relation for a Free Surface gives the required relation between the radian frequency and the wavenumber.