Difference between revisions of "Template:Separation of variables for a dock"

From WikiWaves
Jump to navigationJump to search
Line 2: Line 2:
 
== Separation of Variables for a Dock ==
 
== Separation of Variables for a Dock ==
  
Applying Laplace's equation in the vertical direction assuming
+
The separation of variables equation for a dock
a separation constant <math>\mu</math> we obtain
 
 
<center>
 
<center>
 
<math>
 
<math>
\zeta_{zz}+\mu^{2}\zeta=0.\,
+
\frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} + k^2 Z =0.
 
</math>
 
</math>
 
</center>
 
</center>
We then use the boundary condition at <math>z=-h</math>, which is
+
subject to the boundary conditions
the same for all <math>x</math> to write
 
 
<center>
 
<center>
 
<math>
 
<math>
\zeta=\cos\mu(z+h)\,
+
\frac{dZ}{dz}(-h) = 0
 
</math>
 
</math>
 
</center>
 
</center>
where the separation constant <math>\mu^{2}</math> must
+
and
satisfy different equations depending on whether we are under
 
the free-surface or the dock covered region. For the free surface
 
<center><math>
 
k\tan\left(  kh\right)  =-\alpha,\,
 
</math></center>
 
which is the [[Dispersion Relation for a Free Surface]]
 
and for the dock covered region
 
 
<center>
 
<center>
 
<math>
 
<math>
\kappa\tan(\kappa h)=0,
+
\frac{dZ}{dz}(0) = 0
 
</math>
 
</math>
 
</center>
 
</center>
Note that we have set <math>\mu=k</math> under the free
+
The solution is
surface and <math>\mu=\kappa</math> under the plate. We denote the
 
positive imaginary solution of free-surface equation by <math>k_{0}</math> and
 
the positive real solutions by <math>k_{m}</math>, <math>m\geq1</math>. The solutions of
 
dock equation are
 
 
<math>\kappa_{m}=m\pi/h</math>, <math>m\geq 0</math>. We define
 
<math>\kappa_{m}=m\pi/h</math>, <math>m\geq 0</math>. We define
 
<center>
 
<center>

Revision as of 04:25, 26 August 2008

Separation of Variables for a Dock

The separation of variables equation for a dock

[math]\displaystyle{ \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} + k^2 Z =0. }[/math]

subject to the boundary conditions

[math]\displaystyle{ \frac{dZ}{dz}(-h) = 0 }[/math]

and

[math]\displaystyle{ \frac{dZ}{dz}(0) = 0 }[/math]

The solution is [math]\displaystyle{ \kappa_{m}=m\pi/h }[/math], [math]\displaystyle{ m\geq 0 }[/math]. We define

[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region and

[math]\displaystyle{ \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0 }[/math]

as the vertical eigenfunction of the potential in the dock covered region. For later reference, we note that:

[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{m}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{m}=\frac{1}{2}\left( \frac{\cos k_{m}h\sin k_{m}h+k_{m}h}{k_{m}\cos ^{2}k_{m}h}\right) }[/math]

and

[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{n}(z)\psi_{m}(z) d z=B_{mn} }[/math]

where

[math]\displaystyle{ B_{mn}=\frac{k_{n}\sin k_{n}h\cos\kappa_{m}h-\kappa_{m}\cos k_{n}h\sin \kappa_{m}h}{\left( \cos k_{n}h\right) \left( k_{n} ^{2}-\kappa_{m}^{2}\right) } }[/math]

and

[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]

where

[math]\displaystyle{ C_{m}=\frac{1}{2}h,\quad,m\neq 0 \quad \mathrm{and} \quad C_0 = h }[/math]