Difference between revisions of "Template:Incident potential for two dimensions"
From WikiWaves
Jump to navigationJump to searchLine 8: | Line 8: | ||
\phi^{\mathrm{I}} =e^{-k_{0}x}\phi_{0}\left( | \phi^{\mathrm{I}} =e^{-k_{0}x}\phi_{0}\left( | ||
z\right) | z\right) | ||
+ | </math> | ||
+ | </center> | ||
+ | |||
+ | == Expansion of the Potential == | ||
+ | |||
+ | Therefore the potential can | ||
+ | be expanded as | ||
+ | <center> | ||
+ | <math> | ||
+ | \phi(x,z)=e^{-{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{{k}_{m}x}\phi_{m}(z), \;\;x<0 | ||
+ | </math> | ||
+ | </center> | ||
+ | and | ||
+ | <center> | ||
+ | <math> | ||
+ | \phi(x,z)=\sum_{m=0}^{\infty}b_{m} | ||
+ | e^{-{k}_{m}x}\phi_{m}(z), \;\;x>0 | ||
</math> | </math> | ||
</center> | </center> |
Revision as of 01:16, 7 April 2010
Incident potential
The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. The incident potential can therefore be written as
[math]\displaystyle{ \phi^{\mathrm{I}} =e^{-k_{0}x}\phi_{0}\left( z\right) }[/math]
Expansion of the Potential
Therefore the potential can be expanded as
[math]\displaystyle{ \phi(x,z)=e^{-{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{{k}_{m}x}\phi_{m}(z), \;\;x\lt 0 }[/math]
and
[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m} e^{-{k}_{m}x}\phi_{m}(z), \;\;x\gt 0 }[/math]