Difference between revisions of "Template:Incident potential for two dimensions"

From WikiWaves
Jump to navigationJump to search
Line 8: Line 8:
 
\phi^{\mathrm{I}}  =e^{-k_{0}x}\phi_{0}\left(
 
\phi^{\mathrm{I}}  =e^{-k_{0}x}\phi_{0}\left(
 
z\right)  
 
z\right)  
 +
</math>
 +
</center>
 +
 +
== Expansion of the Potential ==
 +
 +
Therefore the potential can
 +
be expanded as
 +
<center>
 +
<math>
 +
\phi(x,z)=e^{-{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{{k}_{m}x}\phi_{m}(z), \;\;x<0
 +
</math>
 +
</center>
 +
and
 +
<center>
 +
<math>
 +
\phi(x,z)=\sum_{m=0}^{\infty}b_{m}
 +
e^{-{k}_{m}x}\phi_{m}(z), \;\;x>0
 
</math>
 
</math>
 
</center>
 
</center>

Revision as of 01:16, 7 April 2010

Incident potential

The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. The incident potential can therefore be written as

[math]\displaystyle{ \phi^{\mathrm{I}} =e^{-k_{0}x}\phi_{0}\left( z\right) }[/math]

Expansion of the Potential

Therefore the potential can be expanded as

[math]\displaystyle{ \phi(x,z)=e^{-{k}_0x}\phi_0(z)+\sum_{m=0}^{\infty}a_{m}e^{{k}_{m}x}\phi_{m}(z), \;\;x\lt 0 }[/math]

and

[math]\displaystyle{ \phi(x,z)=\sum_{m=0}^{\infty}b_{m} e^{-{k}_{m}x}\phi_{m}(z), \;\;x\gt 0 }[/math]