Difference between revisions of "KdV Equation Derivation"
Line 29: | Line 29: | ||
To make these equations dimensionless, we use the scaled variables, | To make these equations dimensionless, we use the scaled variables, | ||
<center><math> | <center><math> | ||
− | \bar{x}=\frac{x}{\lambda} | + | \bar{x}=\frac{x}{\lambda}, \quad \bar{y}=\frac{y}{h}, \quad \bar{\Phi}=\frac{h\Phi}{\lambda a \sqrt{gh}}, \quad \bar{t}=\frac{t\sqrt{gh}}{\lambda} |
</math></center> | </math></center> | ||
+ | where <math>\sqrt{gh}</math> is defined as <i>linear wave speed in shallow water</i>. Hence the dimensionless system is, | ||
+ | |||
+ | <center><math> | ||
+ | \begin{matrix} | ||
+ | &\epsilon^2 {\bar{\Phi}}_{\bar{x}\bar{x}} + {\bar{\Phi}}_{\bar{y}\bar{y}} &= &0 \\ \\ | ||
+ | &{\bar{\Phi}}_{\bar{y}} &= &\epsilon^2(H_{\bar{t}}+\alpha {\bar{\Phi}}_{\bar{x}} H_{\bar{x}}) \\ \\ | ||
+ | &{\bar{\Phi}}_{\bar{t}} + \frac{1}{2}\alpha ({{\bar{\Phi}}_{\bar{x}}}^2 + \epsilon^2 {{\bar{\Phi}}_{\bar{y}}}^2) + H &= &(B(t)-gh) / ag \\ \\ | ||
+ | &{\bar{\Phi}}_{\bar{y}} = 0 &, &\bar{y} = 0 | ||
+ | \end{matrix} | ||
+ | </math></center> | ||
+ | |||
+ | where <math>\epsilon = \frac{h}{\lambda}</math> and <math>\alpha=\frac{a}{h}</math> are two small parameters which are given in this problem. | ||
+ | |||
+ | In the next step we use the transform <math>\bar{\Phi} \to \bar{\Phi} + \int\limits_{0}^{\bar{t}}(\frac{B(s) - gh}{ag})ds</math> and introduce further transformation to remove <math>\epsilon</math> from the equations. | ||
===Summery=== | ===Summery=== | ||
[[Category:789]] | [[Category:789]] |
Revision as of 11:30, 14 October 2008
We consider the method of derivation of KdV Equation in the concept of Nonlinear Shallow Water Waves.
Introduction
In the analysis of Nonlinear Shallow Water Waves equations we see that there are two important geometrical parameters, [math]\displaystyle{ \epsilon = \frac{h}{\lambda} }[/math] and [math]\displaystyle{ \alpha=\frac{a}{h} }[/math], are involved. By choosing appropriate magnitudes for [math]\displaystyle{ \epsilon }[/math] and [math]\displaystyle{ \alpha }[/math], we can consider a theory in which dispersion and nonlinearity are in balance. The Korteweg-de Vries Equation verifies the relation between dispersion and nonlinearity properties.
Derivation
We begin with the equations for waves on water,
[math]\displaystyle{ \begin{matrix} &\Phi_{xx} + \Phi_{yy} &= 0 \quad &-\infin\lt x\lt \infin, 0 \le y \le \eta(x,t) \\ \end{matrix} }[/math]
Provided that at [math]\displaystyle{ y=\eta(x,t)=h+aH(x,t) }[/math] we have,
To make these equations dimensionless, we use the scaled variables,
where [math]\displaystyle{ \sqrt{gh} }[/math] is defined as linear wave speed in shallow water. Hence the dimensionless system is,
where [math]\displaystyle{ \epsilon = \frac{h}{\lambda} }[/math] and [math]\displaystyle{ \alpha=\frac{a}{h} }[/math] are two small parameters which are given in this problem.
In the next step we use the transform [math]\displaystyle{ \bar{\Phi} \to \bar{\Phi} + \int\limits_{0}^{\bar{t}}(\frac{B(s) - gh}{ag})ds }[/math] and introduce further transformation to remove [math]\displaystyle{ \epsilon }[/math] from the equations.