Difference between revisions of "Eigenfunctions for a Uniform Free Beam"

From WikiWaves
Jump to navigationJump to search
Line 23: Line 23:
  
 
<center>
 
<center>
<math>C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 cos(\lambda_n x) + C_4 cosh(\lambda_n x)</math>
+
<math>C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x)</math>
 
</center>
 
</center>
  
Line 31: Line 31:
 
<math>
 
<math>
 
\begin{bmatrix}
 
\begin{bmatrix}
- cos(\lambda_n l)&cosh(\lambda_n l)\\
+
- \cos(\lambda_n l)&\cosh(\lambda_n l)\\
sin(\lambda_n l)&sinh(\lambda_n l)\\  
+
\sin(\lambda_n l)&\sinh(\lambda_n l)\\  
 
\end{bmatrix}
 
\end{bmatrix}
  
Line 51: Line 51:
 
For a nontrivial solution one gets:
 
For a nontrivial solution one gets:
 
<center>
 
<center>
<math>tan(\lambda_n l)+tanh(\lambda_n l)=0</math>
+
<math>\tan(\lambda_n l)+\tanh(\lambda_n l)=0</math>
 
</center>
 
</center>

Revision as of 22:26, 6 November 2008

We can find a the eigenfunction which satisfy

[math]\displaystyle{ \partial_x^4 w_n = \lambda_n^4 w_n }[/math]

plus the edge conditions.

[math]\displaystyle{ \begin{matrix} \frac{\partial^3}{\partial x^3} \frac{\partial\phi}{\partial z}= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \frac{\partial^2}{\partial x^2} \frac{\partial\phi}{\partial z} = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L. \end{matrix} }[/math]

This solution is discussed further in Eigenfunctions for a Free Beam.

Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.

General solution of the above stated equation is :

[math]\displaystyle{ w_n(x) = C_1 \sin(\lambda_n x) + C_2 \cos(\lambda_n x) + C_3 \sinh(\lambda_n x) + C_4 \cosh(\lambda_n x) }[/math]

Symmetric modes

[math]\displaystyle{ C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x) }[/math]

By imposing boundary conditions at [math]\displaystyle{ x = l }[/math] :

[math]\displaystyle{ \begin{bmatrix} - \cos(\lambda_n l)&\cosh(\lambda_n l)\\ \sin(\lambda_n l)&\sinh(\lambda_n l)\\ \end{bmatrix} \begin{bmatrix} C_2\\ C_4\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]

For a nontrivial solution one gets:

[math]\displaystyle{ \tan(\lambda_n l)+\tanh(\lambda_n l)=0 }[/math]