Difference between revisions of "Eigenfunctions for a Uniform Free Beam"
Marko tomic (talk | contribs) |
Marko tomic (talk | contribs) |
||
Line 21: | Line 21: | ||
== Symmetric modes == | == Symmetric modes == | ||
+ | |||
+ | <center> | ||
+ | <math>C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x)</math> | ||
+ | </center> | ||
+ | |||
+ | By imposing boundary conditions at <math>x = l</math> : | ||
+ | |||
+ | <center> | ||
+ | <math> | ||
+ | \begin{bmatrix} | ||
+ | - \cos(\lambda_n l)&\cosh(\lambda_n l)\\ | ||
+ | \sin(\lambda_n l)&\sinh(\lambda_n l)\\ | ||
+ | \end{bmatrix} | ||
+ | |||
+ | \begin{bmatrix} | ||
+ | C_2\\ | ||
+ | C_4\\ | ||
+ | \end{bmatrix} | ||
+ | |||
+ | = | ||
+ | |||
+ | \begin{bmatrix} | ||
+ | 0\\ | ||
+ | 0\\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | </center> | ||
+ | |||
+ | For a nontrivial solution one gets: | ||
+ | <center> | ||
+ | <math>\tan(\lambda_n l)+\tanh(\lambda_n l)=0\,</math> | ||
+ | </center> | ||
+ | |||
+ | Having obtained eigenvalues <math>\lambda_n</math>, natural requency can be readily calculated : | ||
+ | <center> | ||
+ | <math>\omega_n = \frac{(\lambda_n l)^2}{l^2}\sqrt\frac{EI}{m}</math> | ||
+ | </center> | ||
+ | |||
+ | Symmetrical natural modes can be written in normalized form as : | ||
+ | <center> | ||
+ | <math>w_n(x) = \frac{1}{2}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n l)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n l)} \right ) | ||
+ | </math> | ||
+ | </center> | ||
+ | |||
+ | == Skew-symmetric modes == | ||
<center> | <center> |
Revision as of 22:56, 6 November 2008
We can find a the eigenfunction which satisfy
[math]\displaystyle{ \partial_x^4 w_n = \lambda_n^4 w_n }[/math]
plus the edge conditions.
This solution is discussed further in Eigenfunctions for a Free Beam.
Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.
General solution of the above stated equation is :
[math]\displaystyle{ w_n(x) = C_1 \sin(\lambda_n x) + C_2 \cos(\lambda_n x) + C_3 \sinh(\lambda_n x) + C_4 \cosh(\lambda_n x)\, }[/math]
Symmetric modes
[math]\displaystyle{ C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x) }[/math]
By imposing boundary conditions at [math]\displaystyle{ x = l }[/math] :
[math]\displaystyle{ \begin{bmatrix} - \cos(\lambda_n l)&\cosh(\lambda_n l)\\ \sin(\lambda_n l)&\sinh(\lambda_n l)\\ \end{bmatrix} \begin{bmatrix} C_2\\ C_4\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]
For a nontrivial solution one gets:
[math]\displaystyle{ \tan(\lambda_n l)+\tanh(\lambda_n l)=0\, }[/math]
Having obtained eigenvalues [math]\displaystyle{ \lambda_n }[/math], natural requency can be readily calculated :
[math]\displaystyle{ \omega_n = \frac{(\lambda_n l)^2}{l^2}\sqrt\frac{EI}{m} }[/math]
Symmetrical natural modes can be written in normalized form as :
[math]\displaystyle{ w_n(x) = \frac{1}{2}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n l)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n l)} \right ) }[/math]
Skew-symmetric modes
[math]\displaystyle{ C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x) }[/math]
By imposing boundary conditions at [math]\displaystyle{ x = l }[/math] :
[math]\displaystyle{ \begin{bmatrix} - \cos(\lambda_n l)&\cosh(\lambda_n l)\\ \sin(\lambda_n l)&\sinh(\lambda_n l)\\ \end{bmatrix} \begin{bmatrix} C_2\\ C_4\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]
For a nontrivial solution one gets:
[math]\displaystyle{ \tan(\lambda_n l)+\tanh(\lambda_n l)=0\, }[/math]
Having obtained eigenvalues [math]\displaystyle{ \lambda_n }[/math], natural requency can be readily calculated :
[math]\displaystyle{ \omega_n = \frac{(\lambda_n l)^2}{l^2}\sqrt\frac{EI}{m} }[/math]
Symmetrical natural modes can be written in normalized form as :
[math]\displaystyle{ w_n(x) = \frac{1}{2}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n l)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n l)} \right ) }[/math]