Difference between revisions of "Eigenfunctions for a Uniform Free Beam"

From WikiWaves
Jump to navigationJump to search
Line 55: Line 55:
 
Symmetric natural modes can be written in normalized form as :
 
Symmetric natural modes can be written in normalized form as :
 
<center>
 
<center>
<math>w_n(x) = \frac{1}{2}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n L)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n L)} \right )
+
<math>w_n(x) = \frac{1}{\sqrt{2L}}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n L)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n L)} \right )
 
</math>
 
</math>
 
</center>
 
</center>
 
+
where the
 
+
The symmetric modes have been normalised so that their inner products equal the Kronecker delta.
The symmetric modes can also be nomalised so that their inner products equal the Kronecker delta by letting :
 
<center>
 
<math>w_n(x) = C\left( \cosh(\lambda_n L)\cos(\lambda_n x) + \cos(\lambda_n L)\cosh(\lambda_n x) \right )
 
</math>
 
</center>
 
where :
 
<center>
 
<math>C = \sqrt(2 \lambda_n)/\sqrt(\lambda_n L (2+\cos(2 \lambda_n L)+ \cosh(2 \lambda_n L))+3(\cosh(\lambda_n L))^2 \sin(2 \lambda_n L)+ 3(\cos(\lambda_n L))^2\sinh(2\lambda_n L));</math>
 
</center>
 
  
 
== Anti-symmetric modes ==
 
== Anti-symmetric modes ==

Revision as of 01:14, 28 November 2008

Introduction

We show here how to find the eigenfunction for a beam with free edge conditions.

Equations

We can find a the eigenfunction which satisfy

[math]\displaystyle{ \partial_x^4 w_n = \lambda_n^4 w_n \,\,\, -L \leq x \leq L }[/math]

plus the edge conditions of zero bending moment and shear stress

[math]\displaystyle{ \begin{matrix} \partial_x^3 w_n= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \partial_x^2 w_n = 0 \;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L. \end{matrix} }[/math]

Solution

General solution of the differential equation is :

[math]\displaystyle{ w_n(x) = C_1 \sin(\lambda_n x) + C_2 \cos(\lambda_n x) + C_3 \sinh(\lambda_n x) + C_4 \cosh(\lambda_n x)\, }[/math]

Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.

Symmetric modes

[math]\displaystyle{ C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x) }[/math]

By imposing boundary conditions at [math]\displaystyle{ x = L }[/math] :

[math]\displaystyle{ \begin{bmatrix} - \cos(\lambda_n L)&\cosh(\lambda_n L)\\ \sin(\lambda_n L)&\sinh(\lambda_n L)\\ \end{bmatrix} \begin{bmatrix} C_2\\ C_4\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]

For a nontrivial solution one gets:

[math]\displaystyle{ \tan(\lambda_n L)+\tanh(\lambda_n L)=0\, }[/math]

The first three roots are :

[math]\displaystyle{ \lambda_0 L = 0, \lambda_2 L = 2.365, \lambda_4 L = 5.497\, }[/math]


Symmetric natural modes can be written in normalized form as :

[math]\displaystyle{ w_n(x) = \frac{1}{\sqrt{2L}}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n L)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n L)} \right ) }[/math]

where the The symmetric modes have been normalised so that their inner products equal the Kronecker delta.

Anti-symmetric modes

[math]\displaystyle{ C_2 = C_4 = 0 \Rightarrow w_n(x) = C_1 \sin(\lambda_n x) + C_3 \sinh(\lambda_n x) }[/math]

By imposing boundary conditions at [math]\displaystyle{ x = l }[/math] :

[math]\displaystyle{ \begin{bmatrix} - \sin(\lambda_n L)&\sinh(\lambda_n L)\\ -\cos(\lambda_n L)&\cosh(\lambda_n L)\\ \end{bmatrix} \begin{bmatrix} C_1\\ C_3\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]

For a nontrivial solution one gets:

[math]\displaystyle{ -\tan(\lambda_n L)+\tanh(\lambda_n L)=0\, }[/math]

The first three roots are :

[math]\displaystyle{ \lambda_1 L = 0, \lambda_3 L = 3.925, \lambda_5 L = 7.068\, }[/math]

Anti-symmetric natural modes can be written in normalized form as :

[math]\displaystyle{ w_n(x) = \frac{1}{\sqrt{2L}}\left( \frac{\sin(\lambda_n x)}{\sin(\lambda_n L)}+\frac{\sinh(\lambda_n x)}{\sinh(\lambda_n L)} \right ) }[/math]

where the eigenfunctions have been chosen so that their inner products equal the Kronecker delta.

Natural Frequencies

The equation in the time domain for a beam is

[math]\displaystyle{ m\partial_t^2 w + EI \partial_x^4 w = 0 }[/math]

so that, having obtained eigenvalues [math]\displaystyle{ \lambda_n }[/math], the natural frequency can be readily calculated :

[math]\displaystyle{ \omega_n = \lambda_n^2 \sqrt\frac{EI}{m} }[/math]