Difference between revisions of "Template:Solution for a uniform beam in eigenfunctions"
Line 1: | Line 1: | ||
If the beam is uniform the equations can be written | If the beam is uniform the equations can be written | ||
<center> | <center> | ||
− | <math> D \frac{\partial^{4}\zeta}{\partial x^{4}}+ | + | <math> D \frac{\partial^{4}\zeta}{\partial x^{4}}+\rho_i h \frac{\partial^{2}\zeta}{\partial t^{2}}=0</math> </center> |
We can express the deflection as the series | We can express the deflection as the series | ||
<center><math> \zeta(x,t)=\sum_{n=0}^{\infty} \left( A_n w_n(x) \sin(\lambda_n t) + | <center><math> \zeta(x,t)=\sum_{n=0}^{\infty} \left( A_n w_n(x) \sin(\lambda_n t) + | ||
Line 7: | Line 7: | ||
where <math>w_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>\lambda_n</math> | where <math>w_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>\lambda_n</math> | ||
− | |||
− | |||
− | |||
− | |||
Then <math> A_n \,\!</math> and <math> B_n \,\!</math> can be found using orthogonality properties: | Then <math> A_n \,\!</math> and <math> B_n \,\!</math> can be found using orthogonality properties: | ||
<center> | <center> |
Revision as of 08:26, 7 April 2009
If the beam is uniform the equations can be written
We can express the deflection as the series
where [math]\displaystyle{ w_n }[/math] are the Eigenfunctions for a Uniform Free Beam and [math]\displaystyle{ \lambda_n }[/math]
Then [math]\displaystyle{ A_n \,\! }[/math] and [math]\displaystyle{ B_n \,\! }[/math] can be found using orthogonality properties:
- [math]\displaystyle{ A_n=\frac{\int_{-L}^{L}f(x)w_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} \,\! }[/math]
- [math]\displaystyle{ B_n=\frac{\int_{-L}^{L}g(x)w_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} }[/math]
Note that
- these modes drop off very quickly (ie [math]\displaystyle{ v_4 \,\! }[/math] oscillates about zero with negligible amplitude), so the higher order vibration modes can be ignored.
- As time progresses ([math]\displaystyle{ t \rightarrow \infty \,\! }[/math]), each mode will vibrate around the zero displacement line with frequency [math]\displaystyle{ \overline{\omega}_{n}\,\! }[/math].
- Having obtained eigenvalues [math]\displaystyle{ k_n \,\! }[/math], the natural frequencies can easily be obtained [math]\displaystyle{ \overline{\omega}_{n}=k_{n}^{2}\sqrt{\frac{D}{m}}\,\! }[/math].