Difference between revisions of "Template:Solution for a uniform beam in eigenfunctions"
From WikiWaves
Jump to navigationJump to searchLine 7: | Line 7: | ||
<center><math> \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(k t) + | <center><math> \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(k t) + | ||
\sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(k t)}{k_n} </math></center> | \sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(k t)}{k_n} </math></center> | ||
− | where <math>X_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>k_m = sqrt{D/m}\lambda_n</math> | + | where <math>X_n</math> are the [[Eigenfunctions for a Uniform Free Beam]] and <math>k_m = \sqrt{D/m}\lambda_n</math> |
are the eigenfunctions. | are the eigenfunctions. | ||
Revision as of 10:44, 8 April 2009
If the beam is uniform the equations can be written as
We can express the deflection as the series
where [math]\displaystyle{ X_n }[/math] are the Eigenfunctions for a Uniform Free Beam and [math]\displaystyle{ k_m = \sqrt{D/m}\lambda_n }[/math] are the eigenfunctions.
Then [math]\displaystyle{ A_n \,\! }[/math] and [math]\displaystyle{ B_n \,\! }[/math] can be found using orthogonality properties:
- [math]\displaystyle{ A_n=\frac{\int_{-L}^{L}f(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} \,\! }[/math]
- [math]\displaystyle{ B_n=\frac{\int_{-L}^{L}g(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} }[/math]
Note that we cannot give the plate an initial velocity that contains a rigid body motions which is why the sum starts at [math]\displaystyle{ n=2 }[/math] for time derivative.