Difference between revisions of "Graf's Addition Theorem"
m |
m |
||
Line 16: | Line 16: | ||
This expression is valid only provided that <math>\,\!r_l < R_{jl}</math> ( | This expression is valid only provided that <math>\,\!r_l < R_{jl}</math> ( | ||
although this restriction is unnecessary if <math>\,\!C=J</math> and <math>\,\!\nu</math> is an integer). | although this restriction is unnecessary if <math>\,\!C=J</math> and <math>\,\!\nu</math> is an integer). | ||
− | |||
Explicit versions of the theorem are given below, | Explicit versions of the theorem are given below, |
Latest revision as of 05:42, 28 April 2009
Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found in Abramowitz and Stegun 1964 online. We express the theorem in the following form
where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ \,\!J_\nu }[/math], [math]\displaystyle{ \,\!I_\nu }[/math], [math]\displaystyle{ \,\!Y_\nu }[/math], [math]\displaystyle{ \,\!K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math], [math]\displaystyle{ (r_j,\theta_j)\,\! }[/math] and [math]\displaystyle{ (r_l,\theta_l)\,\! }[/math] are polar coordinates centred at two different positions with global coordinates [math]\displaystyle{ \boldsymbol{O}_j }[/math], [math]\displaystyle{ \boldsymbol{O}_l }[/math], and [math]\displaystyle{ (R_{jl},\vartheta_{jl}) }[/math] are the polar coordinates of [math]\displaystyle{ \boldsymbol{O}_l }[/math] with respect to [math]\displaystyle{ \boldsymbol{O}_j }[/math]. This expression is valid only provided that [math]\displaystyle{ \,\!r_l \lt R_{jl} }[/math] ( although this restriction is unnecessary if [math]\displaystyle{ \,\!C=J }[/math] and [math]\displaystyle{ \,\!\nu }[/math] is an integer).
Explicit versions of the theorem are given below,
This theorem form the basis for Kagemoto and Yue Interaction Theory.