Difference between revisions of "Template:Standard linear wave scattering equations"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
 
The equations are the following
 
The equations are the following
<center><math>
+
 
\Delta\phi=0, \, -h<z<0,\,\,\,\mathbf{x} \in \Omega
+
{{standard linear wave scattering equations without body condition}}
</math></center>
+
 
<center><math>
 
\frac{\partial\phi}{\partial z}=0, \, z=-h,
 
</math></center>
 
<center><math>
 
\partial_n \phi  = \alpha \phi,\,z=0,\,\,\mathbf{x} \in F,
 
</math></center>
 
 
<center><math>
 
<center><math>
 
\partial_n\phi  = \mathcal{L}\phi, \, z\in\partial\Omega,
 
\partial_n\phi  = \mathcal{L}\phi, \, z\in\partial\Omega,

Revision as of 04:08, 20 August 2009

The equations are the following

[math]\displaystyle{ \begin{align} \Delta\phi &=0, &-h\lt z\lt 0,\,\,\mathbf{x} \in \Omega \\ \partial_z\phi &= 0, &z=-h, \\ \partial_z \phi &= \alpha \phi, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]


(note that the last expression can be obtained from combining the expressions:

[math]\displaystyle{ \begin{align} \partial_z \phi &= -\mathrm{i} \omega \zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \\ \mathrm{i} \omega \phi &= g\zeta, &z=0,\,\,\mathbf{x} \in \partial \Omega_{\mathrm{F}}, \end{align} }[/math]

where [math]\displaystyle{ \alpha = \omega^2/g \, }[/math])

[math]\displaystyle{ \partial_n\phi = \mathcal{L}\phi, \, z\in\partial\Omega, }[/math]

where [math]\displaystyle{ \alpha }[/math] is the wavenumber in Infinite Depth which is given by [math]\displaystyle{ \alpha=\omega^2/g }[/math] where [math]\displaystyle{ g }[/math] is gravity. [math]\displaystyle{ \mathcal{L} }[/math] is a linear operator which relates the normal and potential on the body surface through the physics of the body.