Difference between revisions of "Sommerfeld Radiation Condition"
Line 1: | Line 1: | ||
+ | {{complete pages}} | ||
+ | |||
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only | This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only | ||
outgoing at infinity. It depends on the convention regarding whether the time dependence | outgoing at infinity. It depends on the convention regarding whether the time dependence |
Revision as of 19:15, 8 February 2010
This is a condition for the Frequency Domain Problem that the scattered wave is only outgoing at infinity. It depends on the convention regarding whether the time dependence is [math]\displaystyle{ \exp (i\omega t)\, }[/math] or [math]\displaystyle{ \exp (-i\omega t)\, }[/math] Assuming the former (which is the standard convention on this wiki) In two-dimensions the condition is
[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]
where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.
In three-dimensions the condition is
[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]
If the time dependence is assumed to be [math]\displaystyle{ \exp (-i\omega t)\, }[/math] then we have in two-dimensions
[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]
and in three-dimensions
[math]\displaystyle{ \sqrt{|\mathbf{r}|}\left( \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]