Difference between revisions of "Fundamental Solution for thin plates"
Mike smith (talk | contribs) m (→Introduction) |
Mike smith (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | {{complete pages}} | ||
+ | |||
==Introduction== | ==Introduction== | ||
On this page, we aim to derive the Green's function for a thin uniform plate. This derivation relies heavily on concepts discussed in [[Boyling 1996]]. We seek the fundamental solution for the Biharmonic equation in <math>\mathbb{R}^2 \,</math>, which is taken to be of the form | On this page, we aim to derive the Green's function for a thin uniform plate. This derivation relies heavily on concepts discussed in [[Boyling 1996]]. We seek the fundamental solution for the Biharmonic equation in <math>\mathbb{R}^2 \,</math>, which is taken to be of the form | ||
Line 61: | Line 63: | ||
</math> | </math> | ||
</center> | </center> | ||
− | where <math>H_0^{(1)} \,</math> denotes Hankel functions of the first kind | + | (where <math>H_0^{(1)} \,</math> denotes Hankel functions of the first kind) which incorporates the Sommerfeld radiation condition |
<center> | <center> | ||
<math> | <math> |
Latest revision as of 21:14, 27 April 2010
Introduction
On this page, we aim to derive the Green's function for a thin uniform plate. This derivation relies heavily on concepts discussed in Boyling 1996. We seek the fundamental solution for the Biharmonic equation in [math]\displaystyle{ \mathbb{R}^2 \, }[/math], which is taken to be of the form
[math]\displaystyle{ \left(\Delta^2 - k^2\right) u =0, }[/math]
where [math]\displaystyle{ u \, }[/math] is the displacement, [math]\displaystyle{ k \, }[/math] is the wavenumber, and [math]\displaystyle{ \Delta = \partial_r^2 + \frac{1}{r}\partial_r, }[/math] in polar coordinates.
Linear Operators
We consider the operator [math]\displaystyle{ P(\Delta) = \left(\Delta^2 - k^4\right) = \left(\Delta - (ik)^2\right) \left(\Delta -k^2\right) }[/math], whereas Boyling considers more general linear operators of the form
[math]\displaystyle{ P(\lambda) = c(\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2} \ldots (\lambda - \lambda_p)^{m_p}, }[/math]
which for our case, is identical when [math]\displaystyle{ c=1 \, }[/math], [math]\displaystyle{ \lambda_1 = (ik)^2 \, }[/math], [math]\displaystyle{ \lambda_2 = k^2 \, }[/math], [math]\displaystyle{ m_1 = m_2 = 1 \, }[/math], and [math]\displaystyle{ m_3=m_4=\ldots =0 \, }[/math].
The reciprocal of [math]\displaystyle{ P(\lambda) \, }[/math] is taken to be of the form
[math]\displaystyle{ \frac{1}{P(\lambda)} = \sum_{q=1}^{p} \sum_{n=1}^{m_q} \frac{c_{qn}}{(\lambda - \lambda_q)^n}. }[/math]
where
[math]\displaystyle{ c_{qn} = \lim_{\lambda \rightarrow \lambda_q} \frac{1}{(m_q - n)!} \frac{\partial^{m_q - n}}{\partial \lambda^{m_q-n}} \left[\frac{(\lambda - \lambda_q)^{m_q}}{P(\lambda)}\right]. }[/math]
It is straightforward to compute the [math]\displaystyle{ c_{qn} \, }[/math] coefficients
as well as determining a corresponding quantity [math]\displaystyle{ P_{qn} \, }[/math] such that [math]\displaystyle{ \sum_{q=1}^{p} \sum_{n=1}^{m_q} c_{qn}P_{qn} = 1 }[/math], where
[math]\displaystyle{ P_{qn}(\lambda) \left[\lambda - \lambda_q\right]^n = P(\lambda), \quad \mbox{for all q,n}. }[/math]
That is, [math]\displaystyle{ P_{11} = (\lambda - k^2) \, }[/math] and [math]\displaystyle{ P_{21} = (\lambda - (ik)^2) \, }[/math].
Determining the Green's function
In order to compute the Green's function for polynomials in the Laplacian, we express our unknown Green's function in terms of the fundamental solution of Helmholtz's equation:
[math]\displaystyle{ G(r) = \sum_{q=1}^{p} \sum_{n=1}^{m_q} c_{qn} G_{n,\lambda_q}(r) = c_{11} G_{1,\lambda_1}+ c_{21} G_{1,\lambda_2}. }[/math]
Using the Green's function for the Helmholtz Equation
[math]\displaystyle{ G_{1,\beta} = \frac{i}{4} H_0^{(1)} (\beta r), }[/math]
(where [math]\displaystyle{ H_0^{(1)} \, }[/math] denotes Hankel functions of the first kind) which incorporates the Sommerfeld radiation condition
[math]\displaystyle{ \lim_{r \rightarrow \infty} r^{1/2} \left(\frac{\partial}{\partial r} - ik \right)G = 0, }[/math]
we obtain the final expression
This is the fundamental solution for our governing equation above.
Behaviour at [math]\displaystyle{ r=0 }[/math]
To determine the solution at [math]\displaystyle{ r \rightarrow 0 }[/math] (where the above expression is singular), the following identities from Abramowitz and Stegun 1964 are used
from pages 358, 375, 376, and 360 respectively.
Let us consider
where introducing the limit yields
Consequently
which then allows us to determine that
Solution
The fundamental solution for a thin uniform plate in [math]\displaystyle{ \mathbb{R}^2 \, }[/math] governed by
[math]\displaystyle{ \left(\Delta^2 - k^2\right) u =0, }[/math]
is defined as follows