Difference between revisions of "Sommerfeld Radiation Condition"

From WikiWaves
Jump to navigationJump to search
(correction to Sommerfeld Rad Cond. admins please doublecheck.)
Line 8: Line 8:
 
<center>
 
<center>
 
<math>
 
<math>
\left(  \frac{\partial}{\partial|x|}+{i}k\right)
+
\sqrt{|{x}|}\left(  \frac{\partial}{\partial|x|}+{i}k\right)
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
</math>
 
</math>
Line 18: Line 18:
 
<center>
 
<center>
 
<math>
 
<math>
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right)
+
|\mathbf{r}|\left(  \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right)
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
 
</math>
 
</math>
Line 27: Line 27:
 
<center>
 
<center>
 
<math>
 
<math>
\left(  \frac{\partial}{\partial|x|}-{i}k\right)
+
\sqrt{|{x}|} \left(  \frac{\partial}{\partial|x|}-{i}k\right)
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.}
 
</math>
 
</math>
Line 34: Line 34:
 
<center>
 
<center>
 
<math>
 
<math>
\sqrt{|\mathbf{r}|}\left(  \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right)
+
|\mathbf{r}|\left(  \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right)
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
 
(\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.}
 
</math>
 
</math>

Revision as of 21:17, 8 July 2010


This is a condition for the Frequency Domain Problem that the scattered wave is only outgoing at infinity. It depends on the convention regarding whether the time dependence is [math]\displaystyle{ \exp (i\omega t)\, }[/math] or [math]\displaystyle{ \exp (-i\omega t)\, }[/math] Assuming the former (which is the standard convention on this wiki) In two-dimensions the condition is

[math]\displaystyle{ \sqrt{|{x}|}\left( \frac{\partial}{\partial|x|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.

In three-dimensions the condition is

[math]\displaystyle{ |\mathbf{r}|\left( \frac{\partial}{\partial|\mathbf{r}|}+{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]

If the time dependence is assumed to be [math]\displaystyle{ \exp (-i\omega t)\, }[/math] then we have in two-dimensions

[math]\displaystyle{ \sqrt{|{x}|} \left( \frac{\partial}{\partial|x|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]

and in three-dimensions

[math]\displaystyle{ |\mathbf{r}|\left( \frac{\partial}{\partial|\mathbf{r}|}-{i}k\right) (\phi-\phi^{\mathrm{{In}}})=0,\;\mathrm{{as\;}}|\mathbf{r}|\rightarrow\infty\mathrm{.} }[/math]