Difference between revisions of "Introduction to the Inverse Scattering Transform"
Line 73: | Line 73: | ||
where <math>b>0.</math> | where <math>b>0.</math> | ||
− | + | \paragraph{Case when <math>\lambda>0</math>} | |
If we solve this equation for the case when <math>\lambda<0,</math> <math>\lambda=-k^{2}</math> we | If we solve this equation for the case when <math>\lambda<0,</math> <math>\lambda=-k^{2}</math> we | ||
Line 81: | Line 81: | ||
\begin{matrix} | \begin{matrix} | ||
− | a_{1}e^{kx}, & x<-1\\ | + | a_{1}\mathrm{e}^{kx}, & x<-1\\ |
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -1<x<1\\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -1<x<1\\ | ||
− | a_{2}e^{-kx} & x>1 | + | a_{2}\mathrm{e}^{-kx} & x>1 |
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 96: | Line 96: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{-kx} & -\cos\kappa\\ | + | \mathrm{e}^{-kx} & -\cos\kappa\\ |
− | + | k\mathrm{e}^{-kx} & \sin\kappa | |
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 118: | Line 118: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{-kx} & -\cos\kappa\\ | + | \mathrm{e}^{-kx} & -\cos\kappa\\ |
− | + | k\mathrm{e}^{-kx} & \sin\kappa | |
\end{matrix} | \end{matrix} | ||
\right) =0 | \right) =0 | ||
Line 125: | Line 125: | ||
which gives us the equation | which gives us the equation | ||
<center><math> | <center><math> | ||
− | e^{-kx}\sin\kappa+\left( \cos\kappa\right) | + | \mathrm{e}^{-kx}\sin\kappa+\left( \cos\kappa\right) k\mathrm{e}^{-kx}=0 |
</math></center> | </math></center> | ||
or | or | ||
Line 134: | Line 134: | ||
finite number of solutions. | finite number of solutions. | ||
− | + | \paragraph{Case when <math>\lambda>0</math>} | |
When <math>\lambda>0</math> we write <math>\lambda=k^{2}</math> and we obtain solution | When <math>\lambda>0</math> we write <math>\lambda=k^{2}</math> and we obtain solution | ||
Line 141: | Line 141: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{- | + | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<-1\\ |
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -1<x<1\\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -1<x<1\\ | ||
− | + | a\mathrm{e}^{-\mathrm{i}kx} & x>1 | |
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 153: | Line 153: | ||
\begin{matrix} | \begin{matrix} | ||
− | -e^{-ik} & \cos\kappa & -\sin\kappa & 0\\ | + | -\mathrm{e}^{-ik} & \cos\kappa & -\sin\kappa & 0\\ |
− | + | ik\mathrm{e}^{-ik} & \kappa\sin\kappa & \kappa\cos\kappa & 0\\ | |
− | 0 & \cos\kappa & \sin\kappa & -e^{-ik}\\ | + | 0 & \cos\kappa & \sin\kappa & -\mathrm{e}^{-ik}\\ |
− | 0 & -\kappa\sin\kappa & \kappa\cos\kappa & | + | 0 & -\kappa\sin\kappa & \kappa\cos\kappa & ik\mathrm{e}^{-ik} |
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 169: | Line 169: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{ik}\\ | + | \mathrm{e}^{ik}\\ |
− | + | ik\mathrm{e}^{-ik}\\ | |
0\\ | 0\\ | ||
0 | 0 | ||
Line 176: | Line 176: | ||
\right) | \right) | ||
</math></center> | </math></center> | ||
+ | |||
==Connection with the KdV== | ==Connection with the KdV== | ||
Line 201: | Line 202: | ||
For the discrete spectrum the eigenfunctions behave like | For the discrete spectrum the eigenfunctions behave like | ||
<center><math> | <center><math> | ||
− | w_{n}\left( x\right) =c_{n}\left( t\right) e^{-k_{n}x} | + | w_{n}\left( x\right) =c_{n}\left( t\right) \mathrm{e}^{-k_{n}x} |
</math></center> | </math></center> | ||
as <math>x\rightarrow\infty</math> with | as <math>x\rightarrow\infty</math> with | ||
Line 209: | Line 210: | ||
The continuous spectrum looks like | The continuous spectrum looks like | ||
<center><math> | <center><math> | ||
− | v\left( x,t\right) \approx e^{- | + | v\left( x,t\right) \approx \mathrm{e}^{-\mathrm{i}kx}+r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx} |
,\ \ \ x\rightarrow-\infty | ,\ \ \ x\rightarrow-\infty | ||
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | v\left( x,t\right) \approx a\left( k,t\right) e^{- | + | v\left( x,t\right) \approx a\left( k,t\right) \mathrm{e}^{-\mathrm{i}kx},\ \ \ x\rightarrow |
\infty | \infty | ||
</math></center> | </math></center> | ||
Line 227: | Line 228: | ||
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | c_{n}\left( t\right) =c_{n}\left( 0\right) e^{4k_{n}^{3}t} | + | c_{n}\left( t\right) =c_{n}\left( 0\right) \mathrm{e}^{4k_{n}^{3}t} |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | r\left( k,t\right) =r\left( k,0\right) e^{8ik^{3}t} | + | r\left( k,t\right) =r\left( k,0\right) \mathrm{e}^{8ik^{3}t} |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
Line 237: | Line 238: | ||
We can recover <math>u</math> from scattering data. We write | We can recover <math>u</math> from scattering data. We write | ||
<center><math> | <center><math> | ||
− | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n} | + | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) \mathrm{e}^{-k_{n} |
− | x}+\int_{-\infty}^{\infty}r\left( k,t\right) e^{ | + | x}+\int_{-\infty}^{\infty}r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx}\mathrm{d}k |
</math></center> | </math></center> | ||
Then solve | Then solve | ||
<center><math> | <center><math> | ||
K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( | K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( | ||
− | x,z;t\right) F\left( z+y;t\right) | + | x,z;t\right) F\left( z+y;t\right) \mathrm{d}z=0 |
</math></center> | </math></center> | ||
This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko | This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko | ||
Line 259: | Line 260: | ||
<math>r\left( k,0\right) =0</math> for all values of <math>k</math> for some <math>u.</math> In this case | <math>r\left( k,0\right) =0</math> for all values of <math>k</math> for some <math>u.</math> In this case | ||
<center><math> | <center><math> | ||
− | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}x} | + | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) \mathrm{e}^{-k_{n}x} |
</math></center> | </math></center> | ||
then | then | ||
<center><math> | <center><math> | ||
K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) | K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) | ||
− | e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) | + | \mathrm{e}^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) |
− | \sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }dz=0 | + | \sum_{n=1}^{N}c_{n}^{2}\left( t\right) \mathrm{e}^{-k_{n}\left( y+z\right) }dz=0 |
</math></center> | </math></center> | ||
From the equation we can see that | From the equation we can see that | ||
<center><math> | <center><math> | ||
K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) v_{m}\left( | K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) v_{m}\left( | ||
− | x\right) e^{-k_{m}y} | + | x\right) \mathrm{e}^{-k_{m}y} |
</math></center> | </math></center> | ||
If we substitute this into the equation | If we substitute this into the equation | ||
<center><math> | <center><math> | ||
− | -\sum_{n=1}^{N}c_{n}\left( t\right) v_{n}\left( x\right) e^{-k_{n}y} | + | -\sum_{n=1}^{N}c_{n}\left( t\right) v_{n}\left( x\right) \mathrm{e}^{-k_{n}y} |
− | +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( x+y\right) } | + | +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) \mathrm{e}^{-k_{n}\left( x+y\right) } |
+\int_{x}^{\infty}-\sum_{m=1}^{N}c_{m}\left( t\right) v_{m}\left( x\right) | +\int_{x}^{\infty}-\sum_{m=1}^{N}c_{m}\left( t\right) v_{m}\left( x\right) | ||
− | e^{-k_{m}y}\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( | + | \mathrm{e}^{-k_{m}y}\sum_{n=1}^{N}c_{n}^{2}\left( t\right) \mathrm{e}^{-k_{n}\left( |
y+z\right) }dz=0 | y+z\right) }dz=0 | ||
</math></center> | </math></center> | ||
which leads to | which leads to | ||
<center><math> | <center><math> | ||
− | -\sum_{n=1}^{N}c_{n}\left( t\right) v_{n}\left( x\right) e^{-k_{n}y} | + | -\sum_{n=1}^{N}c_{n}\left( t\right) v_{n}\left( x\right) \mathrm{e}^{-k_{n}y} |
− | +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( x+y\right) } | + | +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) \mathrm{e}^{-k_{n}\left( x+y\right) } |
-\sum_{n=1}^{N}\sum_{m=1}^{N}\frac{c_{m}\left( t\right) c_{n}^{2}\left( | -\sum_{n=1}^{N}\sum_{m=1}^{N}\frac{c_{m}\left( t\right) c_{n}^{2}\left( | ||
− | t\right) }{k_{n}+k_{m}}v_{m}\left( x\right) e^{-k_{m}x}e^{-k_{n}\left( | + | t\right) }{k_{n}+k_{m}}v_{m}\left( x\right) \mathrm{e}^{-k_{m}x}\mathrm{e}^{-k_{n}\left( |
y+x\right) }=0 | y+x\right) }=0 | ||
</math></center> | </math></center> | ||
and we can eliminate the sum over <math>n</math> , the <math>c_{n}\left( t\right) ,</math> and the | and we can eliminate the sum over <math>n</math> , the <math>c_{n}\left( t\right) ,</math> and the | ||
− | <math>e^{-k_{n}y}</math> to obtain | + | <math>\mathrm{e}^{-k_{n}y}</math> to obtain |
<center><math> | <center><math> | ||
− | -v_{n}\left( x\right) +c_{n}\left( t\right) e^{-k_{n}x}-\sum_{m=1} | + | -v_{n}\left( x\right) +c_{n}\left( t\right) \mathrm{e}^{-k_{n}x}-\sum_{m=1} |
^{N}\frac{c_{n}\left( t\right) c_{m}\left( t\right) }{k_{n}+k_{m}} | ^{N}\frac{c_{n}\left( t\right) c_{m}\left( t\right) }{k_{n}+k_{m}} | ||
− | v_{m}\left( x\right) e^{-\left( k_{m}+k_{n}\right) x}=0 | + | v_{m}\left( x\right) \mathrm{e}^{-\left( k_{m}+k_{n}\right) x}=0 |
</math></center> | </math></center> | ||
which is an algebraic (finite dimensional system)\ for the unknows <math>v_{n}.</math> We | which is an algebraic (finite dimensional system)\ for the unknows <math>v_{n}.</math> We | ||
Line 300: | Line 301: | ||
\left( \mathbf{I}+\mathbf{C}\right) \vec{v}=\vec{f} | \left( \mathbf{I}+\mathbf{C}\right) \vec{v}=\vec{f} | ||
</math></center> | </math></center> | ||
− | where <math>f_{m}=c_{m}\left( t\right) e^{-k_{m}x}</math> and | + | where <math>f_{m}=c_{m}\left( t\right) \mathrm{e}^{-k_{m}x}</math> and |
<center><math> | <center><math> | ||
c_{mn}=\sum_{m=1}^{N}\frac{c_{n}\left( t\right) c_{m}\left( t\right) | c_{mn}=\sum_{m=1}^{N}\frac{c_{n}\left( t\right) c_{m}\left( t\right) | ||
− | }{k_{n}+k_{m}}e^{-\left( k_{m}+k_{n}\right) x} | + | }{k_{n}+k_{m}}\mathrm{e}^{-\left( k_{m}+k_{n}\right) x} |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) \left( | K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) \left( | ||
− | \mathbf{I}+\mathbf{C}\right) ^{-1}\vec{f}e^{-k_{m}y} | + | \mathbf{I}+\mathbf{C}\right) ^{-1}\vec{f}\mathrm{e}^{-k_{m}y} |
</math></center> | </math></center> | ||
This leads to | This leads to | ||
Line 318: | Line 319: | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
K\left( x,x,t\right) & =-\frac{c_{1}\left( t\right) c_{1}\left( | K\left( x,x,t\right) & =-\frac{c_{1}\left( t\right) c_{1}\left( | ||
− | t\right) e^{-k_{1}x}e^{-k_{1}x}}{1+\frac{c_{1}\left( t\right) c_{1}\left( | + | t\right) \mathrm{e}^{-k_{1}x}\mathrm{e}^{-k_{1}x}}{1+\frac{c_{1}\left( t\right) c_{1}\left( |
− | t\right) }{k_{1}+k_{1}}e^{-\left( k_{1}+k_{1}\right) x}}\\ | + | t\right) }{k_{1}+k_{1}}\mathrm{e}^{-\left( k_{1}+k_{1}\right) x}}\\ |
− | & =\frac{-1}{1+e^{2k_{1}x-8k_{1}^{3}t-\alpha}} | + | & =\frac{-1}{1+\mathrm{e}^{2k_{1}x-8k_{1}^{3}t-\alpha}} |
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
− | where <math>e^{-\alpha}=2c_{0}^{2}\left( 0\right) .</math> Therefore | + | where <math>\mathrm{e}^{-\alpha}=2c_{0}^{2}\left( 0\right) .</math> Therefore |
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
u\left( x,t\right) & =2\partial_{x}K\left( x,x,t\right) \\ | u\left( x,t\right) & =2\partial_{x}K\left( x,x,t\right) \\ | ||
− | & =\frac{4k_{1}e^{2k_{1}x-8k_{1}^{3}t-\alpha}}{\left( 1+e^{2k_{1} | + | & =\frac{4k_{1}\mathrm{e}^{2k_{1}x-8k_{1}^{3}t-\alpha}}{\left( 1+\mathrm{e}^{2k_{1} |
x-8k_{1}^{3}t-\alpha}\right) ^{2}}\\ | x-8k_{1}^{3}t-\alpha}\right) ^{2}}\\ | ||
− | & =\frac{-8k_{1}^{2}}{\left( \sqrt{2k_{1}}e^{\theta}+e^{-\theta} | + | & =\frac{-8k_{1}^{2}}{\left( \sqrt{2k_{1}}\mathrm{e}^{\theta}+\mathrm{e}^{-\theta} |
/\sqrt{2k_{1}}\right) ^{2}}\\ | /\sqrt{2k_{1}}\right) ^{2}}\\ | ||
& =2k^{2}\sec^{2}\left\{ k_{1}\left( x-x_{0}\right) -4k_{1}^{3}t\right\} | & =2k^{2}\sec^{2}\left\{ k_{1}\left( x-x_{0}\right) -4k_{1}^{3}t\right\} | ||
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
− | where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} | + | where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}\mathrm{e}^{-\alpha/2}=\mathrm{e}^{-kx_{0} |
}</math>. This is of course the single soliton solution. | }</math>. This is of course the single soliton solution. |
Revision as of 22:32, 15 September 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Introduction to the Inverse Scattering Transform |
Next Topic | Reaction-Diffusion Systems |
Previous Topic | Conservation Laws for the KdV |
Introduction
The inverse scattering transformation gives a way to solve the KdV equation exactly. You can think about is as being an analogous transformation to the Fourier transformation, except it works for a non linear equation. We want to be able to solve
with [math]\displaystyle{ \left\vert u\right\vert \rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math]
The Miura transformation is given by
and if [math]\displaystyle{ v }[/math] satisfies the mKdV
then [math]\displaystyle{ u }[/math] satisfies the KdV (but not vice versa). We can think about the Miura transformation as being a nonlinear ODE solving for [math]\displaystyle{ v }[/math] given [math]\displaystyle{ u. }[/math] This nonlinear ODE is also known as the Riccati equation and there is a well know transformation which linearises this equation. It we write
then we obtain the equation
The KdV is invariant under the transformation [math]\displaystyle{ x\rightarrow x+6\lambda t, }[/math] [math]\displaystyle{ u\rightarrow u+\lambda. }[/math] Therefore we consider the associated eigenvalue problem
The eigenfunctions and eigenvalues of this scattering problem play a key role in the inverse scattering transformation. Note that this is Schrodinger's equation.
Properties of the eigenfunctions
The equation
has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves.
Example: Scattering by a Well
The properties of the eigenfunction is prehaps seem most easily through the following example
where [math]\displaystyle{ b\gt 0. }[/math]
\paragraph{Case when [math]\displaystyle{ \lambda\gt 0 }[/math]}
If we solve this equation for the case when [math]\displaystyle{ \lambda\lt 0, }[/math] [math]\displaystyle{ \lambda=-k^{2} }[/math] we get
where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math] where we have assumed that [math]\displaystyle{ b\gt k^{2} }[/math] (there is no solution for [math]\displaystyle{ b\lt k^{2}). }[/math] We then match [math]\displaystyle{ w }[/math] and its derivative at [math]\displaystyle{ x=\pm1 }[/math] to solve for [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This leads to two system of equation, one for the even ([math]\displaystyle{ a_{1}=a_{2} }[/math] and [math]\displaystyle{ b_{2}=0 }[/math] ) and one for the odd solutions ([math]\displaystyle{ a_{1}=-a_{2} }[/math] and [math]\displaystyle{ b_{1}=0) }[/math]. The solution for the even solutions is
This can non trivial solutions when
which gives us the equation
or
We know that [math]\displaystyle{ 0\lt \kappa\lt \sqrt{b} }[/math] and if we plot this we see that we obtain a finite number of solutions.
\paragraph{Case when [math]\displaystyle{ \lambda\gt 0 }[/math]}
When [math]\displaystyle{ \lambda\gt 0 }[/math] we write [math]\displaystyle{ \lambda=k^{2} }[/math] and we obtain solution
where [math]\displaystyle{ \kappa=\sqrt{b+k^{2}}. }[/math] Matching [math]\displaystyle{ w }[/math] and its derivaties at [math]\displaystyle{ x=\pm1 }[/math] we obtain
Connection with the KdV
If we substitute the relationship
into the KdV after some manipulation we obtain
where [math]\displaystyle{ Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) \partial_{x}w. }[/math] If we integrate this equation then we obtain the result that
provided that the eigenfunction [math]\displaystyle{ w }[/math] is bounded (which is true for the bound state eigenfunctions). This shows that the discrete eigenvalues are unchanged and [math]\displaystyle{ u\left( x,t\right) }[/math] evolves according to the KdV.
Scattering Data
For the discrete spectrum the eigenfunctions behave like
as [math]\displaystyle{ x\rightarrow\infty }[/math] with
The continuous spectrum looks like
where [math]\displaystyle{ r }[/math] is the reflection coefficient and [math]\displaystyle{ a }[/math] is the transmission coefficient. This gives us the scattering data at [math]\displaystyle{ t=0 }[/math]
The scattering data evolves as
We can recover [math]\displaystyle{ u }[/math] from scattering data. We write
Then solve
This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko }equation. We then find [math]\displaystyle{ u }[/math] from
Reflectionless Potential
In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when [math]\displaystyle{ r\left( k,0\right) =0 }[/math] for all values of [math]\displaystyle{ k }[/math] for some [math]\displaystyle{ u. }[/math] In this case
then
From the equation we can see that
If we substitute this into the equation
which leads to
and we can eliminate the sum over [math]\displaystyle{ n }[/math] , the [math]\displaystyle{ c_{n}\left( t\right) , }[/math] and the [math]\displaystyle{ \mathrm{e}^{-k_{n}y} }[/math] to obtain
which is an algebraic (finite dimensional system)\ for the unknows [math]\displaystyle{ v_{n}. }[/math] We can write this as
where [math]\displaystyle{ f_{m}=c_{m}\left( t\right) \mathrm{e}^{-k_{m}x} }[/math] and
This leads to
Lets consider some simple examples. First of all if [math]\displaystyle{ n=1 }[/math] (the single soliton solution) we get
where [math]\displaystyle{ \mathrm{e}^{-\alpha}=2c_{0}^{2}\left( 0\right) . }[/math] Therefore
where [math]\displaystyle{ \theta=k_{1}x-4k^{3}t-\alpha/2 }[/math] and [math]\displaystyle{ \sqrt{2k}\mathrm{e}^{-\alpha/2}=\mathrm{e}^{-kx_{0} } }[/math]. This is of course the single soliton solution.