Difference between revisions of "Properties of the Linear Schrodinger Equation"
(Created page with '{{nonlinear waves course | chapter title = Properties of the Linear Schrodinger Equation | next chapter = Properties of the Linear Schrodinger Equation | previous chapter …') |
|||
Line 4: | Line 4: | ||
| previous chapter = [[Introduction to the Inverse Scattering Transform]] | | previous chapter = [[Introduction to the Inverse Scattering Transform]] | ||
}} | }} | ||
+ | |||
+ | The linear Schrodinger equation | ||
+ | <center><math> | ||
+ | \partial_{x}^{2}w+uw=-\lambda w | ||
+ | </math></center> | ||
+ | has two kinds of solutions for <math>u\rightarrow0</math> as <math>x\rightarrow\pm\infty.</math> The | ||
+ | first are waves and the second are bound solutions. It is well known that | ||
+ | there are at most a finite number of bound solutions (provided <math>u\rightarrow0</math> | ||
+ | as <math>x\pm\infty</math> sufficiently rapidly) and a continum of solutions for the | ||
+ | incident waves. This is easiest seen through the following examples | ||
+ | |||
+ | =Properties of the Linear Schrodinger Equation= | ||
The linear Schrodinger equation | The linear Schrodinger equation | ||
Line 22: | Line 34: | ||
u\left( x\right) =\left\{ | u\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
0 & x\notin\left[ -\varepsilon,\varepsilon\right] \\ | 0 & x\notin\left[ -\varepsilon,\varepsilon\right] \\ | ||
\frac{u_{0}}{2\varepsilon} & x\in\left[ -\varepsilon,\varepsilon\right] | \frac{u_{0}}{2\varepsilon} & x\in\left[ -\varepsilon,\varepsilon\right] | ||
Line 37: | Line 49: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
ae^{kx}, & x<0\\ | ae^{kx}, & x<0\\ | ||
be^{kx}, & x>0 | be^{kx}, & x>0 | ||
Line 59: | Line 71: | ||
w_{1}\left( x\right) =\left\{ | w_{1}\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
\sqrt{k_{1}}e^{k_{1}x}, & x<0\\ | \sqrt{k_{1}}e^{k_{1}x}, & x<0\\ | ||
\sqrt{k_{1}}e^{-k_{1}x}, & x>0 | \sqrt{k_{1}}e^{-k_{1}x}, & x>0 | ||
Line 69: | Line 81: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
− | e^{- | + | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<0\\ |
− | + | a\mathrm{e}^{-\mathrm{i}kx}, & x>0 | |
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 96: | Line 108: | ||
u\left( x\right) =\left\{ | u\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
0 & x\notin\left[ -\varepsilon,\varepsilon\right] \\ | 0 & x\notin\left[ -\varepsilon,\varepsilon\right] \\ | ||
b & x\in\left[ -\varepsilon,\varepsilon\right] | b & x\in\left[ -\varepsilon,\varepsilon\right] | ||
Line 111: | Line 123: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
a_{1}e^{kx}, & x<-\varepsilon\\ | a_{1}e^{kx}, & x<-\varepsilon\\ | ||
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varepsilon<x<\varepsilon\\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varepsilon<x<\varepsilon\\ | ||
Line 127: | Line 139: | ||
\left( | \left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
e^{-k\varepsilon} & -\cos\kappa\varepsilon\\ | e^{-k\varepsilon} & -\cos\kappa\varepsilon\\ | ||
ke^{-k\varepsilon} & -\kappa\sin\kappa\varepsilon | ke^{-k\varepsilon} & -\kappa\sin\kappa\varepsilon | ||
Line 133: | Line 145: | ||
\right) \left( | \right) \left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
a_{1}\\ | a_{1}\\ | ||
b_{1} | b_{1} | ||
Line 139: | Line 151: | ||
\right) =\left( | \right) =\left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
0\\ | 0\\ | ||
0 | 0 | ||
Line 149: | Line 161: | ||
\det\left( | \det\left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
e^{-k\varepsilon} & -\cos\kappa\varepsilon\\ | e^{-k\varepsilon} & -\cos\kappa\varepsilon\\ | ||
ke^{-k\varepsilon} & -\kappa\sin\kappa\varepsilon | ke^{-k\varepsilon} & -\kappa\sin\kappa\varepsilon | ||
Line 171: | Line 183: | ||
\left( | \left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
e^{-k\varepsilon} & -\sin\kappa\varepsilon\\ | e^{-k\varepsilon} & -\sin\kappa\varepsilon\\ | ||
ke^{-k\varepsilon} & \cos\kappa\varepsilon | ke^{-k\varepsilon} & \cos\kappa\varepsilon | ||
Line 177: | Line 189: | ||
\right) \left( | \right) \left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
a_{1}\\ | a_{1}\\ | ||
b_{1} | b_{1} | ||
Line 183: | Line 195: | ||
\right) =\left( | \right) =\left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
0\\ | 0\\ | ||
0 | 0 | ||
Line 193: | Line 205: | ||
\det\left( | \det\left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
e^{-k\varepsilon} & -\sin\kappa\varepsilon\\ | e^{-k\varepsilon} & -\sin\kappa\varepsilon\\ | ||
ke^{-k\varepsilon} & \kappa\cos\kappa\varepsilon | ke^{-k\varepsilon} & \kappa\cos\kappa\varepsilon | ||
Line 215: | Line 227: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
− | e^{- | + | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<-\varepsilon\\ |
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varepsilon<x<\varepsilon\\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varepsilon<x<\varepsilon\\ | ||
− | + | a\mathrm{e}^{-\mathrm{i}kx} & x>\varepsilon | |
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 227: | Line 239: | ||
\left( | \left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
− | -e^{- | + | -\mathrm{e}^{-\mathrm{i}k\varepsilon} & \cos\kappa\varepsilon & -\sin\kappa\varepsilon & 0\\ |
− | + | ik\mathrm{e}^{-\mathrm{i}k\varepsilon} & \kappa\sin\kappa\varepsilon & \kappa\cos\kappa | |
\varepsilon & 0\\ | \varepsilon & 0\\ | ||
− | 0 & \cos\kappa\varepsilon & \sin\kappa\varepsilon & -e^{- | + | 0 & \cos\kappa\varepsilon & \sin\kappa\varepsilon & -\mathrm{e}^{-\mathrm{i}k\varepsilon}\\ |
0 & -\kappa\sin\kappa\varepsilon & \kappa\cos\kappa\varepsilon & | 0 & -\kappa\sin\kappa\varepsilon & \kappa\cos\kappa\varepsilon & | ||
− | + | ik\mathrm{e}^{-\mathrm{i}k\varepsilon} | |
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
r\\ | r\\ | ||
b_{1}\\ | b_{1}\\ | ||
Line 245: | Line 257: | ||
\right) =\left( | \right) =\left( | ||
\begin{matrix} | \begin{matrix} | ||
− | + | ||
− | e^{ | + | \mathrm{e}^{\mathrm{i}k}\\ |
− | + | ik\mathrm{e}^{-\mathrm{i}k}\\ | |
0\\ | 0\\ | ||
0 | 0 |
Revision as of 10:16, 23 September 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Properties of the Linear Schrodinger Equation |
Next Topic | Properties of the Linear Schrodinger Equation |
Previous Topic | Introduction to the Inverse Scattering Transform |
The linear Schrodinger equation
has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves. This is easiest seen through the following examples
Properties of the Linear Schrodinger Equation
The linear Schrodinger equation
has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves. This is easiest seen through the following examples
Example [math]\displaystyle{ \delta }[/math] function potential
We consider here the case when [math]\displaystyle{ u\left( x,0\right) =\delta\left( x\right) . }[/math] Note that this function can be thought of as the limit as of the potential
In this case we need to solve
We consider the case of [math]\displaystyle{ \lambda\lt 0 }[/math] and [math]\displaystyle{ \lambda\gt 0 }[/math] separately. For the first case we write [math]\displaystyle{ \lambda=-k^{2} }[/math] and we obtain
We have two conditions at [math]\displaystyle{ x=0, }[/math] [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0.\lt math\gt This gives the condition that }[/math]a=b</math> and [math]\displaystyle{ k=u_{0}/2. }[/math] We need to normalise the eigenfunctions so that
Therefore
which means that [math]\displaystyle{ a=\sqrt{u_{0}/2}. }[/math] Therefore, there is only one discrete spectral point which we denote by [math]\displaystyle{ k_{1}=u_{0}/2 }[/math]
The continuous eigenfunctions correspond to [math]\displaystyle{ \lambda=k^{2}\gt 0 }[/math] are of the form
Again we have the conditions that [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0. }[/math] This gives us
which has solution
Example: Scattering by a Well
The properties of the eigenfunction is prehaps seem most easily through the following example
where [math]\displaystyle{ b\gt 0. }[/math]
\paragraph{Case when [math]\displaystyle{ \lambda\gt 0 }[/math]}
If we solve this equation for the case when [math]\displaystyle{ \lambda\lt 0, }[/math] [math]\displaystyle{ \lambda=-k^{2} }[/math] we get
where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math] which means that [math]\displaystyle{ 0\leq k\leq\sqrt{b} }[/math] (there is no solution for [math]\displaystyle{ k\gt \sqrt{b}). }[/math] We then match [math]\displaystyle{ w }[/math] and its derivative at [math]\displaystyle{ x=\pm\varepsilon }[/math] to solve for [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This leads to two system of equation, one for the even ([math]\displaystyle{ a_{1}=a_{2} }[/math] and [math]\displaystyle{ b_{2}=0 }[/math] ) and one for the odd solutions ([math]\displaystyle{ a_{1}=-a_{2} }[/math] and [math]\displaystyle{ b_{1}=0) }[/math]. The solution for the even solutions is
This has non trivial solutions when
which gives us the equation
or
We know that [math]\displaystyle{ 0\lt \kappa\lt \sqrt{b} }[/math] and if we plot this we see that we obtain a finite number of solutions.
The solution for the odd solutions is
This can non trivial solutions when
which gives us the equation
or
\paragraph{Case when [math]\displaystyle{ \lambda\gt 0 }[/math]}
When [math]\displaystyle{ \lambda\gt 0 }[/math] we write [math]\displaystyle{ \lambda=k^{2} }[/math] and we obtain solution
where [math]\displaystyle{ \kappa=\sqrt{b+k^{2}}. }[/math] Matching [math]\displaystyle{ w }[/math] and its derivaties at [math]\displaystyle{ x=\pm1 }[/math] we obtain