Difference between revisions of "Properties of the Linear Schrodinger Equation"

From WikiWaves
Jump to navigationJump to search
Line 90: Line 90:
 
==Example: Scattering by a Well==
 
==Example: Scattering by a Well==
  
The properties of the eigenfunction is prehaps seem most easily through the
+
The properties of the eigenfunction is perhaps seem most easily through the
 
following example
 
following example
 
<center><math>
 
<center><math>
Line 96: Line 96:
 
\begin{matrix}
 
\begin{matrix}
  
0 & x\notin\left[  -\varepsilon,\varepsilon\right] \\
+
0 & x\notin\left[  -\varsigma,\varsigma\right] \\
b & x\in\left[  -\varepsilon,\varepsilon\right]
+
b & x\in\left[  -\varsigma,\varsigma\right]
 
\end{matrix}
 
\end{matrix}
 
\right.
 
\right.
Line 111: Line 111:
 
\begin{matrix}
 
\begin{matrix}
  
a_{1}e^{kx}, & x<-\varepsilon\\
+
a_{1}e^{kx}, & x<-\varsigma\\
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varepsilon<x<\varepsilon\\
+
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varsigma<x<\varsigma\\
a_{2}e^{-kx} & x>\varepsilon
+
a_{2}e^{-kx} & x>\varsigma
 
\end{matrix}
 
\end{matrix}
 
\right.
 
\right.
Line 119: Line 119:
 
where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is
 
where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is
 
no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at
 
no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at
<math>x=\pm\varepsilon</math> to solve for <math>a</math> and <math>b</math>. This leads to two system of
+
<math>x=\pm\varsigma</math> to solve for <math>a</math> and <math>b</math>. This leads to two system of
 
equation, one for the even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd
 
equation, one for the even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd
 
solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions
 
solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions
Line 127: Line 127:
 
\begin{matrix}
 
\begin{matrix}
  
e^{-k\varepsilon} & -\cos\kappa\varepsilon\\
+
e^{-k\varsigma} & -\cos\kappa\varsigma\\
ke^{-k\varepsilon} & -\kappa\sin\kappa\varepsilon
+
ke^{-k\varsigma} & -\kappa\sin\kappa\varsigma
 
\end{matrix}
 
\end{matrix}
 
\right)  \left(
 
\right)  \left(
Line 149: Line 149:
 
\begin{matrix}
 
\begin{matrix}
  
e^{-k\varepsilon} & -\cos\kappa\varepsilon\\
+
e^{-k\varsigma} & -\cos\kappa\varsigma\\
ke^{-k\varepsilon} & -\kappa\sin\kappa\varepsilon
+
ke^{-k\varsigma} & -\kappa\sin\kappa\varsigma
 
\end{matrix}
 
\end{matrix}
 
\right)  =0
 
\right)  =0
Line 156: Line 156:
 
which gives us the equation
 
which gives us the equation
 
<center><math>
 
<center><math>
-\kappa e^{-k\varepsilon}\sin\kappa\varepsilon+k\cos\kappa\varepsilon
+
-\kappa e^{-k\varsigma}\sin\kappa\varsigma+k\cos\kappa\varsigma
e^{-k\varepsilon}=0
+
e^{-k\varsigma}=0
 
</math></center>
 
</math></center>
 
or
 
or
 
<center><math>
 
<center><math>
\tan\kappa\varepsilon=\frac{k}{\kappa}
+
\tan\kappa\varsigma=\frac{k}{\kappa}
 
</math></center>
 
</math></center>
 
We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a
 
We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a
Line 171: Line 171:
 
\begin{matrix}
 
\begin{matrix}
  
e^{-k\varepsilon} & -\sin\kappa\varepsilon\\
+
e^{-k\varsigma} & -\sin\kappa\varsigma\\
ke^{-k\varepsilon} & \cos\kappa\varepsilon
+
ke^{-k\varsigma} & \cos\kappa\varsigma
 
\end{matrix}
 
\end{matrix}
 
\right)  \left(
 
\right)  \left(
Line 193: Line 193:
 
\begin{matrix}
 
\begin{matrix}
  
e^{-k\varepsilon} & -\sin\kappa\varepsilon\\
+
e^{-k\varsigma} & -\sin\kappa\varsigma\\
ke^{-k\varepsilon} & \kappa\cos\kappa\varepsilon
+
ke^{-k\varsigma} & \kappa\cos\kappa\varsigma
 
\end{matrix}
 
\end{matrix}
 
\right)  =0
 
\right)  =0
Line 200: Line 200:
 
which gives us the equation
 
which gives us the equation
 
<center><math>
 
<center><math>
\kappa e^{-k}a\cos\kappa\varepsilon+k\sin\kappa\varepsilon e^{-k}=0
+
\kappa e^{-k}a\cos\kappa\varsigma+k\sin\kappa\varsigma e^{-k}=0
 
</math></center>
 
</math></center>
 
or
 
or
Line 215: Line 215:
 
\begin{matrix}
 
\begin{matrix}
  
\mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<-\varepsilon\\
+
\mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<-\varsigma\\
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varepsilon<x<\varepsilon\\
+
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varsigma<x<\varsigma\\
a\mathrm{e}^{-\mathrm{i}kx} & x>\varepsilon
+
a\mathrm{e}^{-\mathrm{i}kx} & x>\varsigma
 
\end{matrix}
 
\end{matrix}
 
\right.
 
\right.
Line 227: Line 227:
 
\begin{matrix}
 
\begin{matrix}
  
-\mathrm{e}^{-\mathrm{i}k\varepsilon} & \cos\kappa\varepsilon & -\sin\kappa\varepsilon & 0\\
+
-\mathrm{e}^{-\mathrm{i}k\varsigma} & \cos\kappa\varsigma & -\sin\kappa\varsigma & 0\\
ik\mathrm{e}^{-\mathrm{i}k\varepsilon} & \kappa\sin\kappa\varepsilon & \kappa\cos\kappa
+
ik\mathrm{e}^{-\mathrm{i}k\varsigma} & \kappa\sin\kappa\varsigma & \kappa\cos\kappa
\varepsilon & 0\\
+
\varsigma & 0\\
0 & \cos\kappa\varepsilon & \sin\kappa\varepsilon & -\mathrm{e}^{-\mathrm{i}k\varepsilon}\\
+
0 & \cos\kappa\varsigma & \sin\kappa\varsigma & -\mathrm{e}^{-\mathrm{i}k\varsigma}\\
0 & -\kappa\sin\kappa\varepsilon & \kappa\cos\kappa\varepsilon &
+
0 & -\kappa\sin\kappa\varsigma & \kappa\cos\kappa\varsigma &
ik\mathrm{e}^{-\mathrm{i}k\varepsilon}
+
ik\mathrm{e}^{-\mathrm{i}k\varsigma}
 
\end{matrix}
 
\end{matrix}
 
\right)  \left(
 
\right)  \left(

Revision as of 02:40, 24 September 2010

Nonlinear PDE's Course
Current Topic Properties of the Linear Schrodinger Equation
Next Topic Connection betwen KdV and the Schrodinger Equation
Previous Topic Introduction to the Inverse Scattering Transform


The linear Schrodinger equation

[math]\displaystyle{ \partial_{x}^{2}w+uw=-\lambda w }[/math]

has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves. This is easiest seen through the following examples

Example [math]\displaystyle{ \delta }[/math] function potential

We consider here the case when [math]\displaystyle{ u\left( x,0\right) =\delta\left( x\right) . }[/math] Note that this function can be thought of as the limit as of the potential

[math]\displaystyle{ u\left( x\right) =\left\{ \begin{matrix} 0 & x\notin\left[ -\varepsilon,\varepsilon\right] \\ \frac{u_{0}}{2\varepsilon} & x\in\left[ -\varepsilon,\varepsilon\right] \end{matrix} \right. }[/math]

In this case we need to solve

[math]\displaystyle{ \partial_{x}^{2}w+\delta(x) w=-\lambda w }[/math]

We consider the case of [math]\displaystyle{ \lambda\lt 0 }[/math] and [math]\displaystyle{ \lambda\gt 0 }[/math] separately. For the first case we write [math]\displaystyle{ \lambda=-k^{2} }[/math] and we obtain

[math]\displaystyle{ w\left( x\right) =\left\{ \begin{matrix} ae^{kx}, & x\lt 0\\ be^{-kx}, & x\gt 0 \end{matrix} \right. }[/math]

We have two conditions at [math]\displaystyle{ x=0, }[/math] [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0. }[/math] This gives the condition that [math]\displaystyle{ a=b }[/math] and [math]\displaystyle{ k=u_{0}/2. }[/math] We need to normalise the eigenfunctions so that

[math]\displaystyle{ \int_{-\infty}^{\infty}\left( w\left( x\right) \right) ^{2}dx=1. }[/math]

Therefore

[math]\displaystyle{ 2\int_{0}^{\infty}\left( ae^{-u_{0}x/2}\right) ^{2}dx=1 }[/math]

which means that [math]\displaystyle{ a=\sqrt{u_{0}/2}. }[/math] Therefore, there is only one discrete spectral point which we denote by [math]\displaystyle{ k_{1}=u_{0}/2 }[/math]

[math]\displaystyle{ w_{1}\left( x\right) =\left\{ \begin{matrix} \sqrt{k_{1}}e^{k_{1}x}, & x\lt 0\\ \sqrt{k_{1}}e^{-k_{1}x}, & x\gt 0 \end{matrix} \right. }[/math]

The continuous eigenfunctions correspond to [math]\displaystyle{ \lambda=k^{2}\gt 0 }[/math] are of the form

[math]\displaystyle{ w\left( x\right) =\left\{ \begin{matrix} \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x\lt 0\\ a\mathrm{e}^{-\mathrm{i}kx}, & x\gt 0 \end{matrix} \right. }[/math]

Again we have the conditions that [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0. }[/math] This gives us

[math]\displaystyle{ \begin{matrix} 1+r & =a\\ -ika+ik-ikr & =-au_{0} \end{matrix} }[/math]

which has solution

[math]\displaystyle{ \begin{matrix} r & =\frac{u_{0}}{2ik-u_{0}}\\ a & =\frac{2ik}{2ik-u_{0}} \end{matrix} }[/math]

Example: Scattering by a Well

The properties of the eigenfunction is perhaps seem most easily through the following example

[math]\displaystyle{ u\left( x\right) =\left\{ \begin{matrix} 0 & x\notin\left[ -\varsigma,\varsigma\right] \\ b & x\in\left[ -\varsigma,\varsigma\right] \end{matrix} \right. }[/math]

where [math]\displaystyle{ b\gt 0. }[/math]

Case when [math]\displaystyle{ \lambda\gt 0 }[/math]

If we solve this equation for the case when [math]\displaystyle{ \lambda\lt 0, }[/math] [math]\displaystyle{ \lambda=-k^{2} }[/math] we get

[math]\displaystyle{ w\left( x\right) =\left\{ \begin{matrix} a_{1}e^{kx}, & x\lt -\varsigma\\ b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varsigma\lt x\lt \varsigma\\ a_{2}e^{-kx} & x\gt \varsigma \end{matrix} \right. }[/math]

where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math] which means that [math]\displaystyle{ 0\leq k\leq\sqrt{b} }[/math] (there is no solution for [math]\displaystyle{ k\gt \sqrt{b}). }[/math] We then match [math]\displaystyle{ w }[/math] and its derivative at [math]\displaystyle{ x=\pm\varsigma }[/math] to solve for [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This leads to two system of equation, one for the even ([math]\displaystyle{ a_{1}=a_{2} }[/math] and [math]\displaystyle{ b_{2}=0 }[/math] ) and one for the odd solutions ([math]\displaystyle{ a_{1}=-a_{2} }[/math] and [math]\displaystyle{ b_{1}=0) }[/math]. The solution for the even solutions is

[math]\displaystyle{ \left( \begin{matrix} e^{-k\varsigma} & -\cos\kappa\varsigma\\ ke^{-k\varsigma} & -\kappa\sin\kappa\varsigma \end{matrix} \right) \left( \begin{matrix} a_{1}\\ b_{1} \end{matrix} \right) =\left( \begin{matrix} 0\\ 0 \end{matrix} \right) }[/math]

This has non trivial solutions when

[math]\displaystyle{ \det\left( \begin{matrix} e^{-k\varsigma} & -\cos\kappa\varsigma\\ ke^{-k\varsigma} & -\kappa\sin\kappa\varsigma \end{matrix} \right) =0 }[/math]

which gives us the equation

[math]\displaystyle{ -\kappa e^{-k\varsigma}\sin\kappa\varsigma+k\cos\kappa\varsigma e^{-k\varsigma}=0 }[/math]

or

[math]\displaystyle{ \tan\kappa\varsigma=\frac{k}{\kappa} }[/math]

We know that [math]\displaystyle{ 0\lt \kappa\lt \sqrt{b} }[/math] and if we plot this we see that we obtain a finite number of solutions.

The solution for the odd solutions is

[math]\displaystyle{ \left( \begin{matrix} e^{-k\varsigma} & -\sin\kappa\varsigma\\ ke^{-k\varsigma} & \cos\kappa\varsigma \end{matrix} \right) \left( \begin{matrix} a_{1}\\ b_{1} \end{matrix} \right) =\left( \begin{matrix} 0\\ 0 \end{matrix} \right) }[/math]

This can non trivial solutions when

[math]\displaystyle{ \det\left( \begin{matrix} e^{-k\varsigma} & -\sin\kappa\varsigma\\ ke^{-k\varsigma} & \kappa\cos\kappa\varsigma \end{matrix} \right) =0 }[/math]

which gives us the equation

[math]\displaystyle{ \kappa e^{-k}a\cos\kappa\varsigma+k\sin\kappa\varsigma e^{-k}=0 }[/math]

or

[math]\displaystyle{ \tan\kappa=-\frac{\kappa}{k} }[/math]


Case when [math]\displaystyle{ \lambda\gt 0 }[/math]

When [math]\displaystyle{ \lambda\gt 0 }[/math] we write [math]\displaystyle{ \lambda=k^{2} }[/math] and we obtain solution

[math]\displaystyle{ w\left( x\right) =\left\{ \begin{matrix} \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x\lt -\varsigma\\ b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varsigma\lt x\lt \varsigma\\ a\mathrm{e}^{-\mathrm{i}kx} & x\gt \varsigma \end{matrix} \right. }[/math]

where [math]\displaystyle{ \kappa=\sqrt{b+k^{2}}. }[/math] Matching [math]\displaystyle{ w }[/math] and its derivaties at [math]\displaystyle{ x=\pm1 }[/math] we obtain

[math]\displaystyle{ \left( \begin{matrix} -\mathrm{e}^{-\mathrm{i}k\varsigma} & \cos\kappa\varsigma & -\sin\kappa\varsigma & 0\\ ik\mathrm{e}^{-\mathrm{i}k\varsigma} & \kappa\sin\kappa\varsigma & \kappa\cos\kappa \varsigma & 0\\ 0 & \cos\kappa\varsigma & \sin\kappa\varsigma & -\mathrm{e}^{-\mathrm{i}k\varsigma}\\ 0 & -\kappa\sin\kappa\varsigma & \kappa\cos\kappa\varsigma & ik\mathrm{e}^{-\mathrm{i}k\varsigma} \end{matrix} \right) \left( \begin{matrix} r\\ b_{1}\\ b_{2}\\ a \end{matrix} \right) =\left( \begin{matrix} \mathrm{e}^{\mathrm{i}k}\\ ik\mathrm{e}^{-\mathrm{i}k}\\ 0\\ 0 \end{matrix} \right) }[/math]