Difference between revisions of "Properties of the Linear Schrodinger Equation"
Mike smith (talk | contribs) |
Mike smith (talk | contribs) |
||
Line 90: | Line 90: | ||
==Example: Scattering by a Well== | ==Example: Scattering by a Well== | ||
− | The properties of the eigenfunction is | + | The properties of the eigenfunction is perhaps seem most easily through the |
following example | following example | ||
<center><math> | <center><math> | ||
Line 96: | Line 96: | ||
\begin{matrix} | \begin{matrix} | ||
− | 0 & x\notin\left[ -\ | + | 0 & x\notin\left[ -\varsigma,\varsigma\right] \\ |
− | b & x\in\left[ -\ | + | b & x\in\left[ -\varsigma,\varsigma\right] |
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 111: | Line 111: | ||
\begin{matrix} | \begin{matrix} | ||
− | a_{1}e^{kx}, & x<-\ | + | a_{1}e^{kx}, & x<-\varsigma\\ |
− | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\ | + | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varsigma<x<\varsigma\\ |
− | a_{2}e^{-kx} & x>\ | + | a_{2}e^{-kx} & x>\varsigma |
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 119: | Line 119: | ||
where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is | where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is | ||
no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at | no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at | ||
− | <math>x=\pm\ | + | <math>x=\pm\varsigma</math> to solve for <math>a</math> and <math>b</math>. This leads to two system of |
equation, one for the even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd | equation, one for the even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd | ||
solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions | solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions | ||
Line 127: | Line 127: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{-k\ | + | e^{-k\varsigma} & -\cos\kappa\varsigma\\ |
− | ke^{-k\ | + | ke^{-k\varsigma} & -\kappa\sin\kappa\varsigma |
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 149: | Line 149: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{-k\ | + | e^{-k\varsigma} & -\cos\kappa\varsigma\\ |
− | ke^{-k\ | + | ke^{-k\varsigma} & -\kappa\sin\kappa\varsigma |
\end{matrix} | \end{matrix} | ||
\right) =0 | \right) =0 | ||
Line 156: | Line 156: | ||
which gives us the equation | which gives us the equation | ||
<center><math> | <center><math> | ||
− | -\kappa e^{-k\ | + | -\kappa e^{-k\varsigma}\sin\kappa\varsigma+k\cos\kappa\varsigma |
− | e^{-k\ | + | e^{-k\varsigma}=0 |
</math></center> | </math></center> | ||
or | or | ||
<center><math> | <center><math> | ||
− | \tan\kappa\ | + | \tan\kappa\varsigma=\frac{k}{\kappa} |
</math></center> | </math></center> | ||
We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a | We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a | ||
Line 171: | Line 171: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{-k\ | + | e^{-k\varsigma} & -\sin\kappa\varsigma\\ |
− | ke^{-k\ | + | ke^{-k\varsigma} & \cos\kappa\varsigma |
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 193: | Line 193: | ||
\begin{matrix} | \begin{matrix} | ||
− | e^{-k\ | + | e^{-k\varsigma} & -\sin\kappa\varsigma\\ |
− | ke^{-k\ | + | ke^{-k\varsigma} & \kappa\cos\kappa\varsigma |
\end{matrix} | \end{matrix} | ||
\right) =0 | \right) =0 | ||
Line 200: | Line 200: | ||
which gives us the equation | which gives us the equation | ||
<center><math> | <center><math> | ||
− | \kappa e^{-k}a\cos\kappa\ | + | \kappa e^{-k}a\cos\kappa\varsigma+k\sin\kappa\varsigma e^{-k}=0 |
</math></center> | </math></center> | ||
or | or | ||
Line 215: | Line 215: | ||
\begin{matrix} | \begin{matrix} | ||
− | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<-\ | + | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<-\varsigma\\ |
− | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\ | + | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\varsigma<x<\varsigma\\ |
− | a\mathrm{e}^{-\mathrm{i}kx} & x>\ | + | a\mathrm{e}^{-\mathrm{i}kx} & x>\varsigma |
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 227: | Line 227: | ||
\begin{matrix} | \begin{matrix} | ||
− | -\mathrm{e}^{-\mathrm{i}k\ | + | -\mathrm{e}^{-\mathrm{i}k\varsigma} & \cos\kappa\varsigma & -\sin\kappa\varsigma & 0\\ |
− | ik\mathrm{e}^{-\mathrm{i}k\ | + | ik\mathrm{e}^{-\mathrm{i}k\varsigma} & \kappa\sin\kappa\varsigma & \kappa\cos\kappa |
− | \ | + | \varsigma & 0\\ |
− | 0 & \cos\kappa\ | + | 0 & \cos\kappa\varsigma & \sin\kappa\varsigma & -\mathrm{e}^{-\mathrm{i}k\varsigma}\\ |
− | 0 & -\kappa\sin\kappa\ | + | 0 & -\kappa\sin\kappa\varsigma & \kappa\cos\kappa\varsigma & |
− | ik\mathrm{e}^{-\mathrm{i}k\ | + | ik\mathrm{e}^{-\mathrm{i}k\varsigma} |
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( |
Revision as of 02:40, 24 September 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Properties of the Linear Schrodinger Equation |
Next Topic | Connection betwen KdV and the Schrodinger Equation |
Previous Topic | Introduction to the Inverse Scattering Transform |
The linear Schrodinger equation
has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves. This is easiest seen through the following examples
Example [math]\displaystyle{ \delta }[/math] function potential
We consider here the case when [math]\displaystyle{ u\left( x,0\right) =\delta\left( x\right) . }[/math] Note that this function can be thought of as the limit as of the potential
In this case we need to solve
We consider the case of [math]\displaystyle{ \lambda\lt 0 }[/math] and [math]\displaystyle{ \lambda\gt 0 }[/math] separately. For the first case we write [math]\displaystyle{ \lambda=-k^{2} }[/math] and we obtain
We have two conditions at [math]\displaystyle{ x=0, }[/math] [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0. }[/math] This gives the condition that [math]\displaystyle{ a=b }[/math] and [math]\displaystyle{ k=u_{0}/2. }[/math] We need to normalise the eigenfunctions so that
Therefore
which means that [math]\displaystyle{ a=\sqrt{u_{0}/2}. }[/math] Therefore, there is only one discrete spectral point which we denote by [math]\displaystyle{ k_{1}=u_{0}/2 }[/math]
The continuous eigenfunctions correspond to [math]\displaystyle{ \lambda=k^{2}\gt 0 }[/math] are of the form
Again we have the conditions that [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0. }[/math] This gives us
which has solution
Example: Scattering by a Well
The properties of the eigenfunction is perhaps seem most easily through the following example
where [math]\displaystyle{ b\gt 0. }[/math]
Case when [math]\displaystyle{ \lambda\gt 0 }[/math]
If we solve this equation for the case when [math]\displaystyle{ \lambda\lt 0, }[/math] [math]\displaystyle{ \lambda=-k^{2} }[/math] we get
where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math] which means that [math]\displaystyle{ 0\leq k\leq\sqrt{b} }[/math] (there is no solution for [math]\displaystyle{ k\gt \sqrt{b}). }[/math] We then match [math]\displaystyle{ w }[/math] and its derivative at [math]\displaystyle{ x=\pm\varsigma }[/math] to solve for [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This leads to two system of equation, one for the even ([math]\displaystyle{ a_{1}=a_{2} }[/math] and [math]\displaystyle{ b_{2}=0 }[/math] ) and one for the odd solutions ([math]\displaystyle{ a_{1}=-a_{2} }[/math] and [math]\displaystyle{ b_{1}=0) }[/math]. The solution for the even solutions is
This has non trivial solutions when
which gives us the equation
or
We know that [math]\displaystyle{ 0\lt \kappa\lt \sqrt{b} }[/math] and if we plot this we see that we obtain a finite number of solutions.
The solution for the odd solutions is
This can non trivial solutions when
which gives us the equation
or
Case when [math]\displaystyle{ \lambda\gt 0 }[/math]
When [math]\displaystyle{ \lambda\gt 0 }[/math] we write [math]\displaystyle{ \lambda=k^{2} }[/math] and we obtain solution
where [math]\displaystyle{ \kappa=\sqrt{b+k^{2}}. }[/math] Matching [math]\displaystyle{ w }[/math] and its derivaties at [math]\displaystyle{ x=\pm1 }[/math] we obtain