Difference between revisions of "Connection betwen KdV and the Schrodinger Equation"
Line 91: | Line 91: | ||
K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) | K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) | ||
e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) | e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) | ||
− | \sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( y+z\right) } | + | \sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }\mathrm{d}z=0 |
</math></center> | </math></center> | ||
From the equation we can see that | From the equation we can see that | ||
Line 102: | Line 102: | ||
^{2}\left( t\right) e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty} | ^{2}\left( t\right) e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty} | ||
-\sum_{m=1}^{N}v_{m}\left( x,t\right) e^{-k_{m}z}\sum_{n=1}^{N}c_{n} | -\sum_{m=1}^{N}v_{m}\left( x,t\right) e^{-k_{m}z}\sum_{n=1}^{N}c_{n} | ||
− | ^{2}\left( t\right) e^{-k_{n}\left( y+z\right) } | + | ^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }\mathrm{d}z=0 |
</math></center> | </math></center> | ||
which leads to | which leads to |
Revision as of 09:48, 6 November 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Connection betwen KdV and the Schrodinger Equation |
Next Topic | Example Calculations for the KdV and IST |
Previous Topic | Properties of the Linear Schrodinger Equation |
If we substitute the relationship
into the KdV after some manipulation we obtain
where [math]\displaystyle{ Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) \partial_{x}w. }[/math] If we integrate this equation then we obtain the result that
provided that the eigenfunction [math]\displaystyle{ w }[/math] is bounded (which is true for the bound state eigenfunctions). This shows that the discrete eigenvalues are unchanged and [math]\displaystyle{ u\left( x,t\right) }[/math] evolves according to the KdV. Many other properties can be found
Scattering Data
For the discrete spectrum the eigenfunctions behave like
as [math]\displaystyle{ x\rightarrow\infty }[/math] with
The continuous spectrum looks like
where [math]\displaystyle{ r }[/math] is the reflection coefficient and [math]\displaystyle{ a }[/math] is the transmission coefficient. This gives us the scattering data at [math]\displaystyle{ t=0 }[/math]
The scattering data evolves as
We can recover [math]\displaystyle{ u }[/math] from scattering data. We write
Then solve
This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko }equation. We then find [math]\displaystyle{ u }[/math] from
Reflectionless Potential
In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when [math]\displaystyle{ r\left( k,0\right) =0 }[/math] for all values of [math]\displaystyle{ k }[/math] for some [math]\displaystyle{ u. }[/math] In this case
then
From the equation we can see that
If we substitute this into the equation,
which leads to
and we can eliminate the sum over [math]\displaystyle{ n }[/math] and the [math]\displaystyle{ e^{-k_{n}y} }[/math] to obtain
which is an algebraic (finite dimensional system) for the unknows [math]\displaystyle{ v_{n}. }[/math].
We can write this as
where [math]\displaystyle{ f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x} }[/math] and the elements of [math]\displaystyle{ mathbf{C} }[/math] are given by
This gives us
We then find [math]\displaystyle{ u(x,t) }[/math] from [math]\displaystyle{ K }[/math].
Single Soliton Example
If [math]\displaystyle{ n=1 }[/math] (a single soliton solution) we get
where [math]\displaystyle{ e^{-\alpha}=1/c_{0}^{2}\left( 0\right) . }[/math] Therefore
where [math]\displaystyle{ \theta=k_{1}x-4k^{3}t-\alpha/2 }[/math] and [math]\displaystyle{ \sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} } }[/math]. This is of course the single soliton solution.