Difference between revisions of "Template:Added mass damping and force matrices definition"
From WikiWaves
Jump to navigationJump to searchLine 1: | Line 1: | ||
− | We | + | We define the added mass matrix by |
<center><math> | <center><math> | ||
− | A_{\mu\nu} = \mathrm{Re} \left\{ | + | A_{\mu\nu} = \mathrm{Re} \left\{\rho\iint_{\partial\Omega_{B}} |
\phi_{\nu}^{\mathrm{R}} \mathbf{n}_{\mu}\, dS \right\} | \phi_{\nu}^{\mathrm{R}} \mathbf{n}_{\mu}\, dS \right\} | ||
− | + | and the damping matrix by | |
− | |||
− | |||
<center><math> | <center><math> | ||
− | B_{\mu\nu} = \mathrm{Im} \left\{ \rho\iint_{\partial\Omega_{B}} | + | B_{\mu\nu} = \mathrm{Im} \left\{ \omega \rho\iint_{\partial\Omega_{B}} |
\phi_{\nu}^{\mathrm{R}} \mathbf{n}_{\mu}\, dS \right\} | \phi_{\nu}^{\mathrm{R}} \mathbf{n}_{\mu}\, dS \right\} | ||
</math></center> | </math></center> | ||
− | + | and the forcing vector by | |
<center><math> | <center><math> | ||
f_{\mu} = \mathrm{i}\omega\rho\iint_{\partial\Omega_{B}} | f_{\mu} = \mathrm{i}\omega\rho\iint_{\partial\Omega_{B}} | ||
\left(\phi^{\mathrm{I}} + \phi^{\mathrm{D}} \right) \mathbf{n}_{\mu}\, dS | \left(\phi^{\mathrm{I}} + \phi^{\mathrm{D}} \right) \mathbf{n}_{\mu}\, dS | ||
</math></center> | </math></center> |
Revision as of 12:56, 26 April 2011
We define the added mass matrix by
and the forcing vector by