Difference between revisions of "Template:Incident potential for two dimensions"
Line 18: | Line 18: | ||
</math> | </math> | ||
</center> | </center> | ||
− | which represents the reflected wave. In any scattering problem <math>|R|^2 | + | which represents the reflected wave. In any scattering problem <math>|R|^2 + |T|^2 = 1</math> where <math>R</math> and <math>T</math> are the reflection and transmission coefficients respectively. |
Revision as of 06:35, 6 March 2012
Incident potential
To create meaningful solutions of the velocity potential [math]\displaystyle{ \phi }[/math] in the specified domains we add an incident wave term to the expansion for the domain of [math]\displaystyle{ x \lt 0 }[/math] above. The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. We would only see this in the time domain [math]\displaystyle{ \Phi(x,z,t) }[/math] however, in the frequency domain the incident potential can therefore be written as
[math]\displaystyle{ \phi^{\mathrm{I}}(x,z) =e^{-k_{0}x}\chi_{0}\left( z\right). }[/math]
The total velocity (scattered) potential now becomes [math]\displaystyle{ \phi = \phi^{\mathrm{I}} + \phi^{\mathrm{D}} }[/math] for the domain of [math]\displaystyle{ x \lt 0 }[/math].
The first term in the expansion of the diffracted potential for the domain [math]\displaystyle{ x \lt 0 }[/math] is given by
[math]\displaystyle{ a_{0}e^{k_{0}x}\chi_{0}\left( z\right) }[/math]
which represents the reflected wave. In any scattering problem [math]\displaystyle{ |R|^2 + |T|^2 = 1 }[/math] where [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] are the reflection and transmission coefficients respectively.