Difference between revisions of "Interaction Theory for Cylinders"

From WikiWaves
Jump to navigationJump to search
Line 58: Line 58:
 
A system of equations for the unknown  
 
A system of equations for the unknown  
 
coefficients (in the expansion  (basisrep_out_d)) of the
 
coefficients (in the expansion  (basisrep_out_d)) of the
scattered wavefields of all bodies is developed. This system of
+
scattered wavefields of all cylinders is developed. This system of
 
equations is based on transforming the  
 
equations is based on transforming the  
scattered potential of <math>\Delta_j</math> into an incident potential upon
+
scattered potential of cylinder <math>j</math> into an incident potential upon cylinder
<math>\Delta_l</math> (<math>j \neq l</math>). Doing this for all bodies simultaneously,
+
<math>l</math> (<math>j \neq l</math>). Doing this for all cylinders simultaneously,
and relating the incident and scattered potential for each body, a system
+
and relating the incident and scattered potential for each cylinder, a system
 
of equations for the unknown coefficients is developed.  
 
of equations for the unknown coefficients is developed.  
  
The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be
+
The scattered potential <math>\phi_j^{\mathrm{S}}</math> of cylinder <math>j</math> needs to be
 
represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math>
 
represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math>
upon <math>\Delta_l</math>, <math>j \neq l</math>. This can be accomplished by using
+
upon cylinder <math>l</math>, <math>j \neq l</math>. This can be accomplished by using
 
[[Graf's Addition Theorem]]
 
[[Graf's Addition Theorem]]
 
<center><math> (transf)
 
<center><math> (transf)
Line 74: Line 74:
 
J_\nu (k r_l) \mathrm{e}^{\mathrm{i}\nu (\pi - \theta_l + \varphi_{jl})}, \quad j \neq l,
 
J_\nu (k r_l) \mathrm{e}^{\mathrm{i}\nu (\pi - \theta_l + \varphi_{jl})}, \quad j \neq l,
 
</math></center>
 
</math></center>
where <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of <math>\Delta_l</math> in the local coordinates of <math>\Delta_j</math>.
+
where <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of cylinder <math>l</math> in the local coordinates of cylinder <math>j</math>.
  
 
Making use of the eigenfunction expansion as well as equation (transf), the scattered potential
 
Making use of the eigenfunction expansion as well as equation (transf), the scattered potential
of <math>\Delta_j</math> (cf.~ (basisrep_out_d)) can be expressed in terms of the
+
of cylinder <math>j</math> (cf.~ (basisrep_out_d)) can be expressed in terms of the
incident potential upon <math>\Delta_l</math> as
+
incident potential upon cylinder <math>l</math> as
 
<center><math>
 
<center><math>
 
\phi_j^{\mathrm{S}} (r_l,\theta_l,z)  
 
\phi_j^{\mathrm{S}} (r_l,\theta_l,z)  
Line 93: Line 93:
 
</math></center>
 
</math></center>
 
The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be
 
The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be
expanded in the eigenfunctions corresponding to the incident wavefield upon
+
expanded in the eigenfunctions corresponding to the incident wavefield upon cylinder
<math>\Delta_l</math>. Let <math>\tilde{D}_{\nu}^{l}</math> denote the coefficients of this
+
<math>l</math>. Let <math>\tilde{D}_{\nu}^{l}</math> denote the coefficients of this
 
ambient incident wavefield in the incoming eigenfunction expansion for
 
ambient incident wavefield in the incoming eigenfunction expansion for
<math>\Delta_l</math> (cf. the example in [[Cylindrical Eigenfunction Expansion]]).  
+
<math>\Delta_l</math> (cf. the example in [[Cylindrical Eigenfunction Expansion]]).
 
 
 
<center><math>
 
<center><math>
\phi^{\mathrm{In}}(r_l,\theta_l,z) = A \frac{g}{\omega} \, e^{\mathrm{i} k (O_x^l
+
\phi^{\mathrm{In}}(r_l,\theta_l,z) = A \frac{g}{\omega} \, e^{\mathrm{i} k (x_l
\cos \chi + O_x^l \sin \chi)} \sum_{\mu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\mu (\pi/2 -  \chi)}
+
\cos \chi + y_l \sin \chi)} \sum_{\mu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\mu (\pi/2 -  \chi)}
 
J_\mu(k r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}.
 
J_\mu(k r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}.
 
</math></center>
 
</math></center>

Revision as of 03:20, 22 June 2006

Introduction

We present an illustrative example of an interaction theory for the case of [math]\displaystyle{ n }[/math] Bottom Mounted Cylinders. This theory was presented in Linton and Evans 1990 and it can be derived from the Kagemoto and Yue Interaction Theory by simply assuming that each body is a cylinder.

Equations of Motion

After we have Removed the Depth Dependence the problem consists of [math]\displaystyle{ n }[/math] cylinders of radius [math]\displaystyle{ a_j }[/math] whose center is at [math]\displaystyle{ (x_j,y_j) }[/math] subject to Helmholtz's Equation

[math]\displaystyle{ \nabla^2 \phi -k^2\phi= 0, }[/math]

where [math]\displaystyle{ k }[/math] is the positive real root of the Dispersion Relation for a Free Surface

[math]\displaystyle{ k \tanh k d = \alpha\,. }[/math]

Eigenfunction expansion of the potential

Each cylinder is subject to an incident potential and moves in response to this incident potential to produce a scattered potential. Each of these is expanded using the Cylindrical Eigenfunction Expansion The scattered potential of cylinder [math]\displaystyle{ j }[/math] can be expressed as

[math]\displaystyle{ (basisrep_out_d) \phi_j^\mathrm{S} (r_j,\theta_j,z) = \sum_{\mu = - \infty}^{\infty} A_{\mu}^j H^{(1)}_\mu (k r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j}, }[/math]

with discrete coefficients [math]\displaystyle{ A_{\mu}^j }[/math], where [math]\displaystyle{ (r_j,\theta_j) }[/math] are polar coordinates centered at center of the [math]\displaystyle{ j }[/math]th cylinder.

The incident potential upon cylinder [math]\displaystyle{ j }[/math] can be also be expanded in regular cylindrical eigenfunctions,

[math]\displaystyle{ (basisrep_in_d) \phi_j^\mathrm{I} (r_j,\theta_j,z) = \sum_{\nu = - \infty}^{\infty} D_{\nu}^j J_\nu (k r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}, }[/math]

with discrete coefficients [math]\displaystyle{ D_{\nu}^j }[/math]. In these expansions, [math]\displaystyle{ J_\nu }[/math] and [math]\displaystyle{ H^{(1)}_\nu }[/math] denote Bessel and Hankel function respectively (: Bessel functions) both of first kind and order [math]\displaystyle{ \nu }[/math]. For comparison with the Kagemoto and Yue Interaction Theory (which is written slightly differently), we remark that, for real [math]\displaystyle{ x }[/math],

[math]\displaystyle{ K_\nu (-\mathrm{i}x) = \frac{\pi \mathrm{i}^{\nu+1}}{2} H_\nu^{(1)}(x) \quad \mathrm{and} \quad I_\nu (-\mathrm{i}x) = \mathrm{i}^{-\nu} J_\nu(x) }[/math]

with [math]\displaystyle{ I_\nu }[/math] and [math]\displaystyle{ K_\nu }[/math] denoting the modified Bessel functions of first and second kind, respectively, both of order [math]\displaystyle{ \nu }[/math].

Derivation of the system of equations

A system of equations for the unknown coefficients (in the expansion (basisrep_out_d)) of the scattered wavefields of all cylinders is developed. This system of equations is based on transforming the scattered potential of cylinder [math]\displaystyle{ j }[/math] into an incident potential upon cylinder [math]\displaystyle{ l }[/math] ([math]\displaystyle{ j \neq l }[/math]). Doing this for all cylinders simultaneously, and relating the incident and scattered potential for each cylinder, a system of equations for the unknown coefficients is developed.

The scattered potential [math]\displaystyle{ \phi_j^{\mathrm{S}} }[/math] of cylinder [math]\displaystyle{ j }[/math] needs to be represented in terms of the incident potential [math]\displaystyle{ \phi_l^{\mathrm{I}} }[/math] upon cylinder [math]\displaystyle{ l }[/math], [math]\displaystyle{ j \neq l }[/math]. This can be accomplished by using Graf's Addition Theorem

[math]\displaystyle{ (transf) H^{(1)}_\tau(k r_j) \mathrm{e}^{\mathrm{i}\tau (\theta_j-\varphi_{jl})} = \sum_{\nu = - \infty}^{\infty} H^{(1)}_{\tau + \nu} (k R_{jl}) \, J_\nu (k r_l) \mathrm{e}^{\mathrm{i}\nu (\pi - \theta_l + \varphi_{jl})}, \quad j \neq l, }[/math]

where [math]\displaystyle{ (R_{jl},\varphi_{jl}) }[/math] are the polar coordinates of the mean centre position of cylinder [math]\displaystyle{ l }[/math] in the local coordinates of cylinder [math]\displaystyle{ j }[/math].

Making use of the eigenfunction expansion as well as equation (transf), the scattered potential of cylinder [math]\displaystyle{ j }[/math] (cf.~ (basisrep_out_d)) can be expressed in terms of the incident potential upon cylinder [math]\displaystyle{ l }[/math] as

[math]\displaystyle{ \phi_j^{\mathrm{S}} (r_l,\theta_l,z) = \sum_{\tau = - \infty}^{\infty} A_{\tau}^j \sum_{\nu = -\infty}^{\infty} H^{(1)}_{\tau-\nu} (k R_{jl}) J_\nu (k r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l} \mathrm{e}^{\mathrm{i}(\tau-\nu) \varphi_{jl}} }[/math]
[math]\displaystyle{ = \sum_{\nu = -\infty}^{\infty} \Big[ \sum_{\tau = - \infty}^{\infty} A_{\tau}^j H^{(1)}_{\tau-\nu} (k R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{jl}} \Big] J_\nu (k r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. }[/math]

The ambient incident wavefield [math]\displaystyle{ \phi^{\mathrm{In}} }[/math] can also be expanded in the eigenfunctions corresponding to the incident wavefield upon cylinder [math]\displaystyle{ l }[/math]. Let [math]\displaystyle{ \tilde{D}_{\nu}^{l} }[/math] denote the coefficients of this ambient incident wavefield in the incoming eigenfunction expansion for [math]\displaystyle{ \Delta_l }[/math] (cf. the example in Cylindrical Eigenfunction Expansion).

[math]\displaystyle{ \phi^{\mathrm{In}}(r_l,\theta_l,z) = A \frac{g}{\omega} \, e^{\mathrm{i} k (x_l \cos \chi + y_l \sin \chi)} \sum_{\mu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\mu (\pi/2 - \chi)} J_\mu(k r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}. }[/math]

The total incident wavefield upon body [math]\displaystyle{ \Delta_j }[/math] can now be expressed as

[math]\displaystyle{ \phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) + \sum_{j=1,j \neq l}^{n} \, \phi_j^{\mathrm{S}} (r_l,\theta_l,z) }[/math]

which can be written as

[math]\displaystyle{ \sum_{\nu = -\infty}^{\infty} {D}_\nu^{l} J_\nu (kr_l) \mathrm{e}^{\mathrm{i}\nu \theta_l} = \sum_{\nu = -\infty}^{\infty} \Big[\tilde{D}_\nu^{l} + \sum_{j=1,j \neq l}^{n} \sum_{\tau = -\infty}^{\infty} A_{\tau}^j H^{(1)}_{\tau - \nu} (k R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{jl}} \Big] J_\nu (k r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. }[/math]

Final Equations

The scattered and incident potential can be related by the Diffraction Transfer Matrix for a Bottom Mounted Cylinder acting in the following way,

[math]\displaystyle{ D_{\mu}^l = \frac{J'_\mu(k a_j)}{H^{(1)}_\mu{}'(k a_j)} A_{\mu}^l. }[/math]

Therefore, the diffraction transfer matrix of the [math]\displaystyle{ l }[/math]th cylinder (having radius [math]\displaystyle{ a_l }[/math]) is diagonal and defined as

[math]\displaystyle{ (diff_op) B_{\mu}^l= J'_\mu(k a_j)/H^{(1)}_\mu{}'(k a_j) . }[/math]

The substitution of (inc_coeff) into (diff_op) gives the required equations to determine the coefficients of the scattered wavefields of all bodies,

[math]\displaystyle{ \frac{J'_\mu(k a_j)}{H^{(1)}_\mu{}'(k a_j)} A_{\mu}^l = \sum_{\nu = -\infty}^{\infty} \Big[ \tilde{D}_{\nu}^{l} + \sum_{j=1,j \neq l}^{N} \sum_{\tau = -\infty}^{\infty} A_{\tau}^j H^{(1)}_{\tau - \nu} (k R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], }[/math]

[math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,n }[/math].