Difference between revisions of "Green Function Methods for Floating Elastic Plates"
Line 39: | Line 39: | ||
\left(\frac{\partial^3}{\partial x^3} - (2 - \nu)k^2_y\frac{\partial}{\partial x}\right) \frac{\partial\phi}{\partial z}= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = \pm b, | \left(\frac{\partial^3}{\partial x^3} - (2 - \nu)k^2_y\frac{\partial}{\partial x}\right) \frac{\partial\phi}{\partial z}= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = \pm b, | ||
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
− | <center><math>\begin{matrix} | + | <center><math>\begin{matrix} |
\left(\frac{\partial^2}{\partial x^2} - \nu k^2_y\right)\frac{\partial\phi}{\partial z} = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = \pm b. | \left(\frac{\partial^2}{\partial x^2} - \nu k^2_y\right)\frac{\partial\phi}{\partial z} = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; \mbox{ for } x = \pm b. | ||
\end{matrix}</math></center> | \end{matrix}</math></center> |
Revision as of 08:50, 19 December 2006
Introduction
The problem of a two-dimensional Floating Elastic Plate was solved using a Free-Surface Green Function by Newman 1994 and Meylan and Squire 1994. We describe here both methods (which are closely related). A related paper was given by Hermans 2003 and we extended to multiple plates in Hermans 2004.
Equations of Motion
We begin with the equations of motion in non-dimensional form for a single Floating Elastic Plate which occupies the region [math]\displaystyle{ -b\leq x\leq b }[/math]. The full derivation of these equation is presented in Eigenfunction Matching Method for Floating Elastic Plates. We assume that the plate is infinite in the [math]\displaystyle{ y }[/math] direction, but we allow the wave to be incident at an angle which we do by introducing a wavenumber [math]\displaystyle{ k_y }[/math]. These means that the total potential is given by
The free-surface is at [math]\displaystyle{ z=0 }[/math] and the sea floor is at [math]\displaystyle{ z=-h }[/math]
where [math]\displaystyle{ \alpha = \omega^2 }[/math] and