Difference between revisions of "Conservation Laws and Boundary Conditions"
Line 40: | Line 40: | ||
</math> </center> <br> | </math> </center> <br> | ||
− | <center><math> P(\vec X, t) : \mbox{Fluid Pressure at (\vec X, t) </math></center> <br> | + | <center><math> P(\vec X, t) : \mbox{Fluid Pressure at} (\vec X, t) </math></center> <br> |
<center><math> \vec g = - \vec k g : \mbox{Acceleration of Gravity} </math></center> <br> | <center><math> \vec g = - \vec k g : \mbox{Acceleration of Gravity} </math></center> <br> | ||
<center><math> \vec k : \mbox{unit vector pointing in the positive z-direction}</math></center> <br> | <center><math> \vec k : \mbox{unit vector pointing in the positive z-direction}</math></center> <br> | ||
− | <center><math> \rho : water density </math></center> | + | <center><math> \rho : \mbox{water density} \, </math></center> |
Revision as of 09:00, 17 January 2007
The Ocean Environment
Non Linear Free-surface Condition
[math]\displaystyle{ \begin{matrix} &\bullet(X,Y,Z) &: &\mbox{Earth Fixed Coordinate System} \\ &\vec X &: &\mbox{Fixed Eulerian Vector} \\ &\vec V &: &\mbox{Flow Velocity Vector at} \ \vec X \\ &\zeta &: &\mbox{Free Surface Elevation} \end{matrix} }[/math]
[math]\displaystyle{ \bullet }[/math] Assume ideal fluid (No shear stresses) and irrotational flow:
Let:
Where [math]\displaystyle{ \Phi(\vec{X},t) }[/math] is the velocity potential assumed sufficiently continuously differentiable.
[math]\displaystyle{ \bullet }[/math] Potential flow model of surface wave propagation and wave-body interactions very accurate. Few important exceptions will be noted.
[math]\displaystyle{ \bullet }[/math] Conservation of mass:
or
[math]\displaystyle{ \bullet }[/math] Conservation of Linear momentum. Euler's Equation in the Absence of Viscosity.